精英家教網 > 高中數學 > 題目詳情
19.(1)設復數z滿足|z|=5,且(3+4i)z是純虛數,求z.
(2)已知m>0,a,b∈R,求證:($\frac{a+mb}{1+m}$)2≤$\frac{{a}^{2}+m^{2}}{1+m}$.

分析 (1)設z=a+bi,計算(3+4i)z,根據純虛數的定義列方程組解出a,b;
(2)使用分析法證明,逐步找出使不等式成立的條件即可.

解答 解:(1)設z=a+bi(a,b∈R),則a2+b2=25,
∵(3+4i)z=(3+4i)(a+bi)=(3a-4b)+(4a+3b)i,
∴$\left\{\begin{array}{l}{3a-4b=0}\\{4a+3b≠0}\\{{a}^{2}+^{2}=25}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=4}\\{b=3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=-3}\end{array}\right.$.
∴z=4+3i或z=-4-3i.
(2)證明:∵m>0,∴1+m>0,
欲證($\frac{a+mb}{1+m}$)2≤$\frac{{a}^{2}+m^{2}}{1+m}$成立,
只需證(a+mb)2≤(1+m)(a2+mb2),即證m(a2-2ab+b2)≥0,
即證(a-b)2≥0,
顯然(a-b)2≥0恒成立,
∴($\frac{a+mb}{1+m}$)2≤$\frac{{a}^{2}+m^{2}}{1+m}$.

點評 本題考查了復數的運算,不等式的證明,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,過右焦點F且斜率為k(k>0)的直線與橢圓C相交于A,B兩點,若$\overrightarrow{AF}=3\overrightarrow{FB}$,則k=1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知圓C與y軸相切,圓心C在直線2x-y=0上,且被直線l:x-y+4=0分成兩段圓弧,其弧長的比為3﹕1.
(Ⅰ)求圓C的標準方程;
(Ⅱ)若以點D(-1,0)為圓心的圓D與圓C相交所得的弦長為$2\sqrt{3}$,求圓D的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.設f(x)=2x-lnx,x∈(0,e),則f(x)的最小值為(  )
A.2e-1B.1-ln2C.2-$\frac{1}{e}$D.1+ln2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知2+$\frac{2}{3}$=22×$\frac{2}{3}$,3+$\frac{3}{8}$=32×$\frac{3}{8}$,4+$\frac{4}{15}$=42×$\frac{4}{15}$,…若9+$\frac{a}$=92×$\frac{a}$(a、b為正整數),則a+b等于( 。
A.89B.90C.98D.99

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.在平面直角坐標系中內動點P(x,y)到圓F:x2+(y-1)2=1的圓心F的距離比它到直線y=-2的距離小1.
(1)求動點P的軌跡方程;
(2)設點P的軌跡為曲線E,過點F的直線l的斜率為k,直線l交曲線E于A,B兩點,交圓F于C,D兩點(A,C兩點相鄰).
①若$\overrightarrow{BF}$=t$\overrightarrow{FA}$,當t∈[1,2]時,求k的取值范圍;
②過A,B兩點分別作曲線E的切線l1,l2,兩切線交于點N,求△ACN與△BDN面積之積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知直線l交拋物線y2=-3x于A、B兩點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=4(O是坐標原點),設l與x軸的非正半軸交于點F,F、F′分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點.若在雙曲線的右支上存在一點P,使得2|$\overrightarrow{PF}$|=3|$\overrightarrow{PF'}$|,則a的取值范圍是[$\frac{4}{5}$,4).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別是F1,F2,右頂點為A,上頂點為B,坐標系原點O到直線AB的距離為$\frac{2\sqrt{21}}{7}$,橢圓的離心率是$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果動直線l:y=kx+n與橢圓C有且只有一個公共點,點F1,F2在直線l上的正投影分別是P,Q,求四邊形F1PQF2面積S的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知函數y=f(x+2)的定義域為(0,2),則函數y=$\frac{f(x)}{x-2}$的定義域為(2,4).

查看答案和解析>>

同步練習冊答案