橢圓的離心率為 (   )
A.B.C.D.
A

試題分析:根據(jù)題意,由于,可知a=2,b=1,那么可知,故可知結(jié)論為,選A.
點(diǎn)評(píng):主要是考查了橢圓的幾何性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸兩端點(diǎn)分別為,是橢圓上的動(dòng)點(diǎn),以為一邊在軸下方作矩形,使,于點(diǎn),于點(diǎn)

(Ⅰ)如圖(1),若,且為橢圓上頂點(diǎn)時(shí),的面積為12,點(diǎn)到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓的圓心為,動(dòng)圓過點(diǎn),且和圓相切,動(dòng)圓的圓心的軌跡記為
(Ⅰ)求曲線的方程;
(Ⅱ)若點(diǎn)為曲線上一點(diǎn),試探究直線:與曲線是否存在交點(diǎn)? 若存在,求出交點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的左、右焦點(diǎn)分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為。
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)是橢圓上除長軸端點(diǎn)外的任一點(diǎn),連接,設(shè)的角平分線的長軸于點(diǎn),求的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)作斜率為的直線,使與橢圓有且只有一個(gè)公共點(diǎn),設(shè)直線的斜率分別為。若,試證明為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)在圓上,直線交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;
(3)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為不重合),且直線軸交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)是直線被橢圓所截得的線段中點(diǎn),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓的左右頂點(diǎn),在長軸上隨機(jī)任取點(diǎn),過作垂直于軸的直線交橢圓于點(diǎn),則使的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,
上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點(diǎn)的圓上的點(diǎn),到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),線段的中垂線與軸相交于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為(    )
A.10B.8C.6D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案