在三棱錐A-BCD中,M為CD的中點,則
AB
+
1
2
BD
+
BC
)=( 。
A、
AM
B、
CM
C、
BC
D、
1
2
BC
考點:向量的減法及其幾何意義,向量的加法及其幾何意義
專題:空間向量及應用
分析:根據(jù)題意,畫出圖形,結(jié)合圖形,利用平面向量的加法與減法運算的幾何意義,即可得出結(jié)論.
解答: 解:如圖所示,
∵M為CD的中點,∴
BM
=
1
2
BC
+
BD
),
AB
+
1
2
BD
+
BC
)=
AB
+
BM
=
AM

故選:A.
點評:本題考查了空間向量的加法與減法運算的幾何意義,是基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若點(1,2)在圓(x+a)2+(y+2a)2=5的內(nèi)部,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足:|
a
|=1,|
b
|=2,|
a
-
b
|=2則|
a
+
b
|=( 。
A、
6
B、
5
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在空間四邊形ABCD中,AB=BC=CD=DA=
3
,BD=AC=2
(Ⅰ)求證:BD⊥AC;
(Ⅱ)求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠A=90°,D是AC上一點,E是BC上一點,若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,則BC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下命題其中正確的序號為
 

(1)直線y=kx+1-4k和圓x2+y2-6x-4y+9=0的位置與k的取值有關(guān);
(2)橢圓
x2
9
+
y2
4
=1
不存在以M(2,0)為中點的弦;
(3)雙曲線x2-
y2
2
=1不存在以P(1,1)為中點的弦;
(4)若拋物線y2=4x與直線y=k(x+2)有且只有一個交點,則k=0或k=
2
2
或k=-
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x+
π
6
)-cosx
(1)求f(
3
)的值;
(2)在△ABC中,若A∈(0,
π
2
),f(A+
3
)=
3
5
,f(B-
π
3
)=-
4
5
,試求角C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(0,sinx),
b
=(1,2cosx),函數(shù)f(x)=
3
2
a
b
,g(x)=
a
2+
b
2-
7
2
,則f(x)的圖象可由g(x)的圖象經(jīng)過怎樣的變換得到(  )
A、向左平移
π
4
個單位長度
B、向右平移
π
4
個單位長度
C、向左平移
π
2
個單位長度
D、向右平移
π
2
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中∠A=60°,b=1,S△ABC=
3
,則
a
cosA
=
 

查看答案和解析>>

同步練習冊答案