6.中央電視臺(tái)第一套節(jié)目午間新聞的播出時(shí)間是每天中午12:00到12:30,在某星期天中午的午間新聞中將隨機(jī)安排播出時(shí)長(zhǎng)5分鐘的有關(guān)電信詐騙的新聞報(bào)道.若小張于當(dāng)天12:20打開電視,則他能收看到這條新聞的完整報(bào)道的概率是( 。
A.$\frac{2}{5}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

分析 他能收看到這條新聞的完整報(bào)道,播出時(shí)間是12:20到12:25,長(zhǎng)度為5;12:00到12:30,長(zhǎng)度為30,即可求出他能收看到這條新聞的完整報(bào)道的概率,

解答 解:他能收看到這條新聞的完整報(bào)道,播出時(shí)間是12:20到12:25,長(zhǎng)度為5;
12:00到12:30,長(zhǎng)度為30,
∴他能收看到這條新聞的完整報(bào)道的概率是$\frac{5}{30}$=$\frac{1}{6}$,
故選D.

點(diǎn)評(píng) 本題考查幾何概型,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.曲線$y={x^3}-\sqrt{3}x+2$上的任意一點(diǎn)P處切線的傾斜角的取值范圍是( 。
A.$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$B.$[{\frac{2π}{3},π})$C.$[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$D.$[{\frac{5π}{6},π})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=-x2+2x,g(x)=|f(x)|.
(1)求f(x)在區(qū)間[-1,2]上的最小值;
(2)作出函數(shù)g(x)的圖象,并根據(jù)圖象寫出其單調(diào)減區(qū)間;
(3)若函數(shù)y=g(x)-log2m至少有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線y=kx+1-k與橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置關(guān)系為( 。
A.相交B.相切C.相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.一個(gè)多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M、N分別是AF、BC的中點(diǎn),
(1)求證:MN∥平面CDEF;
(2)求平面MNF與平面CDEF所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)y=x2-mx+1在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,2]B.(-∞,2)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.點(diǎn)P是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),且$∠{F_1}P{F_2}={60^0}$,則△F1PF2的周長(zhǎng)為6,△F1PF2的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)證明:當(dāng)0<x<1時(shí),(x-1)f(x)<lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知x+y=8,xy=9且x<y,求$\frac{{{x^{\frac{1}{2}}}+{y^{\frac{1}{2}}}}}{{{x^{\frac{1}{2}}}-{y^{\frac{1}{2}}}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案