(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EF,EF∥AB,,H為BC的中點(diǎn).求證:FH∥平面EDB.
證明四邊形EFHG為平行四邊形,可以得到FH∥EG,再由線面平行的判定定理可證
解析試題分析:設(shè)AC與BD交于點(diǎn)G,聯(lián)結(jié)EG、GH.
則G為AC中點(diǎn),∵H是BC中點(diǎn),∴GH AB, ……4分又∵EF AB,∴四邊形EFHG為平行四邊形.
∴FH∥EG. ……8分
又EG?平面EDB,而FH?平面EDB,
∴FH∥平面EDB. ……12分
考點(diǎn):本小題主要考查空間直線與平面平行的證明.
點(diǎn)評:證明空間中直線、平面間的位置關(guān)系,要正確運(yùn)用判定定理和性質(zhì)定理,而且定理中要求的條件要一一列舉出來,缺一不可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點(diǎn)E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖所示,已知S是正三角形ABC所在平面外的一點(diǎn),且SA=SB=SC,SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點(diǎn),試判斷SG與平面DEF的位置關(guān)系,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)如圖,平面,點(diǎn)在上,∥,四邊形為直角梯形,,,
(1)求證:平面;
(2)求二面角的余弦值;
(3)直線上是否存在點(diǎn),使∥平面,若存在,求出點(diǎn);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)如圖:AD=2,AB=4的長方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).
(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問:在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面中 ,棱,分別為的中點(diǎn).
(1)求 >的值;
(2)求證:
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)
已知是四邊形所在平面外一點(diǎn),四邊形是的菱形,側(cè)面
為正三角形,且平面平面.
(1)若為邊的中點(diǎn),求證:平面.
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com