記為不超過實數(shù)的最大整數(shù),例如,,,。設(shè)為正整數(shù),數(shù)列滿足,,現(xiàn)有下列命題:
①當(dāng)時,數(shù)列的前3項依次為5,3,2;
②對數(shù)列都存在正整數(shù),當(dāng)時總有;
③當(dāng)時,;
④對某個正整數(shù),若,則。
其中的真命題有____________。(寫出所有真命題的編號)
①③④
【解析】若,根據(jù)
當(dāng)n=1時,x2=[]=3, 同理x3=, 故①對.
對于②③④可以采用特殊值列舉法:
當(dāng)a=1時,x1=1, x2=1, x3=1, ……xn=1, …… 此時②③④均對.
當(dāng)a=2時,x1=2, x2=1, x3=1, ……xn=1, …… 此時②③④均對[來源:學(xué)§科§網(wǎng)]
當(dāng)a=3時,x1=3, x2=2, x3=1, x4=2……xn=1, ……此時③④均對
綜上,真命題有 ①③④ .
[點評]此題難度較大,不容易尋找其解題的切入點,特殊值列舉是很有效的解決辦法.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市西城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)若對于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:()的充分必要條件為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)為實數(shù),為不超過實數(shù)的最大整數(shù),記,則的取值范圍為,現(xiàn)定義無窮數(shù)列如下:,當(dāng)時,;當(dāng)時,.當(dāng)時,對任意的自然數(shù)都有,則實數(shù)的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)為實數(shù),為不超過實數(shù)的最大整數(shù),記,則的取值范圍為,現(xiàn)定義無窮數(shù)列如下:,當(dāng)時,;當(dāng)時,.如果,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高三零診理科數(shù)學(xué)試卷(解析版) 題型:填空題
記為不超過實數(shù)的最大整數(shù),例如,,,。設(shè)為正整數(shù),數(shù)列滿足,,現(xiàn)有下列命題:
①當(dāng)時,數(shù)列的前3項依次為5,3,2;
②對數(shù)列都存在正整數(shù),當(dāng)時總有;
③當(dāng)時,;
④對某個正整數(shù),若,則。
其中的真命題有____________。(寫出所有真命題的編號
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com