【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
科目:高中數(shù)學 來源: 題型:
【題目】是指懸浮在空氣中的空氣動力學當量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標準,日均值在微克/立方米以下,空氣質量為一級;在微克應立方米微克立方米之間,空氣質量為二級:在微克/立方米以上,空氣質量為超標.從某市年全年每天的監(jiān)測數(shù)據(jù)中隨機地抽取天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表:
日均值 (微克/立方米) | ||||||
頻數(shù)(天) |
(1)從這天的日均值監(jiān)測數(shù)據(jù)中,隨機抽出天,求恰有天空氣質量達到一級的概率;
(2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標的天數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位同學學生參加數(shù)學競賽培訓,在培訓期間他們參加5項預賽,成績如下:
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學競賽,從平均數(shù)、方差的角度考慮,你認為選派哪位學生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為直線上的動點,,過作直線的垂線,交的中垂線于點,記點的軌跡為.
(Ⅰ)求曲線的方程;
(Ⅱ)若直線與圓相切于點,與曲線交于,兩點,且為線段的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下結論正確的個數(shù)是( )
①若數(shù)列中的最大項是第項,則.
②在中,若,則為等腰直角三角形.
③設、分別為等差數(shù)列與的前項和,若,則.
④的內角、、的對邊分別為、、,若、、成等比數(shù)列,且,則.
⑤在中,、、分別是、、所對邊,,則的取值范圍為.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)與的圖象在點處有相同的切線.
(Ⅰ)若函數(shù)與的圖象有兩個交點,求實數(shù)的取值范圍;
(Ⅱ)設函數(shù),,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內接四邊形是原棚戶區(qū)建筑用地,測量可知邊界萬米,萬米,萬米.
(1)請計算原棚戶區(qū)建筑用地的面積及的長;
(2)因地理條件的限制,邊界不能更改,而邊界可以調整,為了提高棚戶區(qū)建筑用地的利用率,請在圓弧上設計一點,使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com