16.已知$\frac{\overline z}{1+i}=2+i$,則復(fù)數(shù)z=( 。
A.1-3iB.-1-3iC.-1+3iD.1+3i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:$\frac{\overline z}{1+i}=2+i$,∴$\overline{z}$=(1+i)(2+i)=1+3i.
則復(fù)數(shù)z=1-3i.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知兩圓相交于A(-1,3),B(-6,m)兩點(diǎn),且這兩圓的圓心均在直線x-y+c=0上,則m+2c的值為( 。
A.-1B.26C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.從5個(gè)不同的小球中選4個(gè)放入3個(gè)箱子中,要求第一個(gè)箱子放入1個(gè)小球,第二個(gè)箱子放入2個(gè)小球,第三個(gè)箱子放入1個(gè)小球,則不同的放法共有( 。
A.120種B.96種C.60種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.8($\sqrt{3}$+1)+πB.8($\sqrt{3}$+1)+2πC.8($\sqrt{3}$+1)一πD.8($\sqrt{3}$+l)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|lnx|,g(x)=k(x-1)(k∈R).
(1)若兩個(gè)實(shí)數(shù)a,b滿足0<a<b,且f(a)=f(b),求4a-b的取值范圍;
(2)證明:當(dāng)k<1時(shí),存在x0>1,使得對(duì)任意的x∈(1,x0),恒有f(x)>g(x);
(3)已知0<a<b,證明:存在x0∈(a,b),使得$\frac{lnb-lna}{b-a}=\frac{1}{x_0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-3y+5≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$則z=x+y的最小值為-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.高三某班男同學(xué)有45名,女同學(xué)有15名,老師按照性別進(jìn)行分層抽樣組建了一個(gè)4人的課外興趣小組.
(1)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出一名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(2)試驗(yàn)結(jié)束后,第一次做試驗(yàn)的同學(xué)A得到的試驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二次做試驗(yàn)的同學(xué)B得到的試驗(yàn)數(shù)據(jù)為69,70,70,72,74,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,且經(jīng)過(guò)點(diǎn)P(-1,2)的拋物線的標(biāo)準(zhǔn)方程是( 。
A.y2=$\frac{1}{4}$xB.y2=-$\frac{1}{4}$xC.y2=-4xD.x2=-4y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0.b>0),若矩形ABCD的四個(gè)頂點(diǎn)在E上,AB,CD的中點(diǎn)為雙曲線E的兩個(gè)焦點(diǎn),且雙曲線E的離心率是2.直線AC的斜率為k.則|k|等于( 。
A.2B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案