已知集合,則從中任選一個(gè)元素滿(mǎn)足的概率為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)文科數(shù)學(xué)試卷(解析版) 題型:填空題
四棱錐P ? ABCD 的底面ABCD是邊長(zhǎng)為2的正方形,PA⊥底面ABCD且PA =4,則PC與底面ABCD所成角的正切值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷理科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)在軸上,離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 以橢圓的長(zhǎng)軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點(diǎn),為軸上一點(diǎn),過(guò)圓心作直線的垂線交橢圓右準(zhǔn)線于點(diǎn).問(wèn):直線能否與圓總相切,如果能,求出點(diǎn)的坐標(biāo);如果不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知集合,則Z= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,為其前項(xiàng)和,且滿(mǎn)足.若不等式對(duì)任意的恒成立,則實(shí)數(shù)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷文科數(shù)學(xué)試卷(解析版) 題型:填空題
在平面直角坐標(biāo)系中,拋物線上縱坐標(biāo)為2的一點(diǎn)到焦點(diǎn)的距離為3,則拋物線的焦點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二理科數(shù)學(xué)試卷(解析版) 題型:解答題
據(jù)環(huán)保部門(mén)測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè)().
(1)試將表示為的函數(shù); (2)若,且時(shí),取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二文科數(shù)學(xué)試卷(解析版) 題型:解答題
如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱(chēng)此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說(shuō)明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求在上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若與交點(diǎn)個(gè)數(shù)為2013,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示的幾何體中,面為正方形,面為等腰梯形, ,,,且平面平面.
(1)求與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使平面平面?
證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com