【題目】定義在上的函數(shù),滿足,,若且,則有( )
A. B. C. D. 不能確定
【答案】A
【解析】
試題根據(jù)確定函數(shù)的單調(diào)性,根據(jù)f(1-x)=f(x),可得f(x)關(guān)于x=對稱,進(jìn)一步分類討論x1與在x2的位置關(guān)系,即可得到f(x1)<f(x2).解:因?yàn)?/span>,則可知當(dāng)x>時(shí),,f′(x)>0,函數(shù)單調(diào)增,x<時(shí),f′(x)<0,函數(shù)單調(diào)減,故可知函數(shù)f(1-x)=f(x),可知函數(shù)在①x1在對稱軸x=的右邊或在對稱軸上,由x1<x2,易得f(x1)<f(x2);②x1在對稱軸x=的左邊,由x1+x2>3易得x2>,∴x2在對稱軸x=的右邊.因?yàn)?/span>|x2->- x1,即|x2-|>|-x1|,∴f(x1)<f(x2)綜合可得:f(x1)<f(x2)故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段南北兩岸互相平行、寬度為的景觀河.靠南岸水域有一半徑為半圓形親水平臺,圓心在南岸邊上,北岸邊有一風(fēng)雨亭(底座大小忽略不計(jì)),風(fēng)雨亭距位于北岸邊上的點(diǎn)(在的正北方,在的右側(cè)).為了方便市民休閑,現(xiàn)決定修建折線型步行棧道(圖中粗線所示),其中與圓相切,段的造價(jià)為4萬元/,段和段分別在南北兩岸邊上(其中為半圓的一條直徑的左端點(diǎn)),段和段的造價(jià)都為2萬元/.記為,.
(1)若,求棧道段的長;
(2)設(shè)三段棧道總造價(jià)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;
(3)對任意,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人獨(dú)立地對某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.
(1)求這一技術(shù)難題被攻克的概率;
(2)現(xiàn)假定這一技術(shù)難題已被攻克,上級決定獎勵萬元.獎勵規(guī)則如下:若只有一人攻克,則此人獲得全部獎金萬元;若只有兩人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元.設(shè)乙、丙兩人得到的獎金數(shù)的和為X,求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)討論在上的單調(diào)性;
(2)當(dāng)時(shí),若存在正實(shí)數(shù),使得對,都有,求的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體中,在平面內(nèi),點(diǎn)是線段的中點(diǎn),在該四面體繞旋轉(zhuǎn)的過程中,直線與平面所成角的余弦值不可能是( )
A.B.C.D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考察所有排列,將每種排列視為一個(gè)元有序?qū)崝?shù)組,設(shè)且,設(shè)為的最大項(xiàng),其中.記數(shù)組為.例如,時(shí),;時(shí),.若數(shù)組中的不同元素個(gè)數(shù)為2.
(1)若,求所有元有序?qū)崝?shù)組的個(gè)數(shù);
(2)求所有元有序?qū)崝?shù)組的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為ρ= 4cosθ,直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線的參數(shù)方程為(α為參數(shù)),曲線上點(diǎn)P的極角為Q為曲線上的動點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車正以迅猛的勢頭發(fā)展,越來越多的企業(yè)不斷推出純電動產(chǎn)品,某汽車集團(tuán)要對過去一年推出的四款純電動車型中銷量較低的車型進(jìn)行產(chǎn)品更新?lián)Q代.為了了解這種車型的外觀設(shè)計(jì)是否需要改進(jìn),該集團(tuán)委托某調(diào)查機(jī)構(gòu)對大眾做問卷調(diào)查,并從參與調(diào)查的人群中抽取了人進(jìn)行抽樣分析,得到如下表格:(單位:人)
喜歡 | 不喜歡 | 合計(jì) | |
青年人 | |||
中年人 | |||
合計(jì) |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為大眾對型車外觀設(shè)計(jì)的喜歡與年齡有關(guān)?
(2)現(xiàn)從所抽取的中年人中按是否喜歡型車外觀設(shè)計(jì)利用分層抽樣的方法抽取人,再從這人中隨機(jī)選出人贈送五折優(yōu)惠券,求選出的人中至少有人喜歡該集團(tuán)型車外觀設(shè)計(jì)的概率;
(3)將頻率視為概率,從所有參與調(diào)查的人群中隨機(jī)抽取人贈送禮品,記其中喜歡型車外觀設(shè)計(jì)的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com