設a,b,c分別是△ABC的三個內角A,B,C所對應邊的邊長,若的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:利用正弦定理求出sinB=b•求出B的值,判定兩個命題的關系.
解答:解:由正弦定理可知 =
∴sinB=b•=×=
∵0<B<180°
∴B=60°或120°
∴若a=1,b=,A=30°則B=60°或120°
∠B=60°不能推出a=1,b=,A=30°
故選D
點評:本題考查了正弦定理和充要條件,要熟練掌握正弦定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a、b、c分別是方程2x=log
1
2
x,(
1
2
)
x
=log
1
2
x,(
1
2
)
x
=log2x
的實數(shù)根,則( 。
A、c<b<a
B、a<b<c
C、b<a<c
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b、c分別是△ABC三個內角∠A、∠B、∠C的對邊,若向量
m
=(1-cos(A+B),cos
A-B
2
)
,
n
=(
5
8
,cos
A-B
2
)
m
n
=
9
8
,
(1)求tanA•tanB的值;
(2)求
absinC
a2+b2-c2
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b、c分別是函數(shù)f(x)=(
1
2
)x-log2x,g(x)=2x-log
1
2
x,h(x)=(
1
2
)x-log
1
2
x
的零點,則a、b、c的大小關系為(  )
A、b<c<a
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b、c分別是先后擲一枚質地均勻的正方體骰子三次得到的點數(shù).
(1)求使函數(shù)f(x)=
1
3
bx3+
1
2
(a+c)x2+(a+c-b)x-4
在R上不存在極值點的概率;
(2)設隨機變量ξ=|a-b|,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,設a,b,c分別是三個內角A,B,C所對的邊,b=2,c=1,面積S△ABC=
1
2
,則內角A的大小為
π
6
6
π
6
6

查看答案和解析>>

同步練習冊答案