A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 求出函數(shù)的導(dǎo)數(shù);再令g(x)=x-2lnx-4,從而可得g(x)在(2,+∞)上是增函數(shù),再由零點(diǎn)判定定理可得存在x0∈(8,9),使g(x0)=0,即2lnx0=x0-4;從而求函數(shù)F(x)的最小值,從而解得.
解答 解:∵x>2,
∴k(x-2)<f(x)可化為k<$\frac{f(x)}{x-2}$=$\frac{x+xlnx}{x-2}$;
令F(x)=$\frac{x+xlnx}{x-2}$,
則F′(x)=$\frac{x-2lnx-4}{{(x-2)}^{2}}$;
令g(x)=x-2lnx-4,則g′(x)=1-$\frac{2}{x}$>0,
故g(x)在(2,+∞)上是增函數(shù),
且g(8)=8-2ln8-4=2(2-ln8)<0,g(9)=9-2ln9-4=5-2ln9>0;
故存在x0∈(8,9),使g(x0)=0,即2lnx0=x0-4;
故F(x)在(2,x0)上是減函數(shù),在(x0,+∞)上是增函數(shù);
故Fmin(x)=F(x0)=$\frac{{x}_{0}{+x}_{0}•\frac{{x}_{0}-4}{2}}{{x}_{0}-2}$=$\frac{{x}_{0}}{2}$;
故k<$\frac{{x}_{0}}{2}$;
故k的最大值是4;
故選:B.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)零點(diǎn)判定定理的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞) | B. | (-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)∪{0} | C. | $[{-\frac{1}{4},0})∪({0,\frac{1}{4}}]$ | D. | $[{-\frac{1}{4},\frac{1}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x≠1,則x2-3x+2≠0 | B. | 若x2-3x+2=0,則x=1 | ||
C. | 若x2-3x+2=0,則x≠1 | D. | 若x2-3x+2≠0,則x≠1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com