【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬(wàn)元,每生產(chǎn)1千件需另投入2.7萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且.

1)寫出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入年總成本)

【答案】1;(2)當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大.

【解析】試題分析:本題考查的知識(shí)點(diǎn)是分段函數(shù)及函數(shù)的最值,分段函數(shù)分段處理,這是研究分段函數(shù)圖象和性質(zhì)最核心的理念,具體做法是:分段函數(shù)的定義域、值域是各段上x、y取值范圍的并集,分段函數(shù)的奇偶性、單調(diào)性要在各段上分別論證;分段函數(shù)的最大值,是各段上最大值中的最大者.第一問,由年利潤(rùn)W=年產(chǎn)量每千件的銷售收入為Rx成本,又由,且年固定成本為10萬(wàn)元,每生產(chǎn)1千件需另投入2.7萬(wàn)元.我們易得年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

第二問,由第一問的解析式,我們求出各段上的最大值,即利潤(rùn)的最大值,然后根據(jù)分段函數(shù)的最大值是各段上最大值的最大者,即可得到結(jié)果.

試題解析:(1)當(dāng)時(shí),

當(dāng)時(shí),

.

2當(dāng)時(shí),由,得,

且當(dāng)時(shí), ;當(dāng)時(shí), ,

當(dāng)時(shí),W取最大值,且,

當(dāng)時(shí), ,

當(dāng)且僅當(dāng)

時(shí), ,

故當(dāng)時(shí),W取最大值38

綜合①②知當(dāng)時(shí),W取最大值38.6萬(wàn)元,故當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“過大年,吃水餃”是我國(guó)不少地方過春節(jié)的一大習(xí)俗,2018年春節(jié)前夕, 市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo).

(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

②將頻率視為概率,若某人從某超市購(gòu)買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學(xué)期望.

附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為

②若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在四邊形ABCD , 是邊長(zhǎng)為4的正三角形,把沿AC折起到的位置,使得平面PAC平面ACD,如圖乙所示,點(diǎn)分別為棱的中點(diǎn).

1求證: 平面;

2求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(3)若在區(qū)間不存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測(cè)試,某實(shí)驗(yàn)中學(xué)初三(8)班的一次體育測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;

(Ⅱ)若要從分?jǐn)?shù)在之間的成績(jī)中任取兩個(gè)學(xué)生成績(jī)分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個(gè)分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求 的值;

(2)試猜想的表達(dá)式(用一個(gè)組合數(shù)表示),并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)設(shè),討論的單調(diào)性;

2)若函數(shù)內(nèi)存在零點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知底面為平行四邊形, ,三角形為銳角三角形,面,設(shè)的中點(diǎn).

求證: (1) ;

(2) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案