已知雙曲線=1(a>0,b>0)的兩條漸近線方程為y=±x,若頂點(diǎn)到漸近線的距離為1,求雙曲線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若點(diǎn)O和點(diǎn)F分別為橢圓=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點(diǎn)M、N在橢圓上,頂點(diǎn)P、Q在正方形的邊AB上,且A、M都在第一象限.
(1) 若正方形ABCD的邊長(zhǎng)為4,且與y軸交于E、F兩點(diǎn),正方形MNPQ的邊長(zhǎng)為2.
① 求證:直線AM與△ABE的外接圓相切;
② 求橢圓的標(biāo)準(zhǔn)方程;
(2) 設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知△ABC外接圓半徑R=,且∠ABC=120°,BC=10,邊BC在x軸上且y軸垂直平分BC邊,則過點(diǎn)A且以B、C為焦點(diǎn)的雙曲線方程為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面幾何里可以得出正確結(jié)論:“正三角形的內(nèi)切圓半徑等于這正三角形的高的”.拓展到空間,類比平面幾何的上述結(jié)論,則正四面體的內(nèi)切球半徑等于這個(gè)正四面體的高的________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用數(shù)學(xué)歸納法證明“12+22+32+…+n2=n(n+1)(2n+1)(n∈N*)”,當(dāng)n=k+1時(shí),應(yīng)在n=k時(shí)的等式左邊添加的項(xiàng)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com