【題目】已知如圖:四邊形ABCD是矩形,BC⊥平面ABE,且AE=2 ,EB=BC=2,點(diǎn)F為CE上一點(diǎn),且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求三棱錐A﹣DBE的體積;
(3)求二面角D﹣BE﹣A的大。
【答案】
(1)證明:連接AC交BD于G,連結(jié)GF,
∵ABCD是矩形,∴G為AC的中點(diǎn),
由BF⊥平面ACE得:BF⊥CE,
由EB=BC知:點(diǎn)F為CE中點(diǎn),
∴FG為△ACE的中位線,
∴FG∥AE,
∵AE平面BFD,F(xiàn)G平面BFD,
∴AE∥平面BFD.
(2)解:由BF⊥平面ACE得:BF⊥AE,
由BC⊥平面ABE及BC∥AD,得:BC⊥AE,AD⊥平面ABE,
∵BC∩BF=F,∴AE⊥平面BCE,則AE⊥BE,
∴VA﹣DBE=VD﹣ABE= ,
即三棱錐A﹣DBE的體積為 .
(3)解:由(2)知:AE⊥BE,AD⊥BE,
∴BE⊥平面ADE,則BE⊥DE,
∴∠DEA是二面角D﹣BE﹣A的平面角
在Rt△ADE中,DE= =4,
∴AD= DE,則∠DEA=30°,
∴二面角D﹣BE﹣A的大小為30°
【解析】(1)連接AC交BD于G,連結(jié)GF,則G為AC的中點(diǎn),推導(dǎo)出BF⊥CE,F(xiàn)G為△ACE的中位線,由此能證明AE∥平面BFD.(2)推導(dǎo)出BF⊥AE,BC⊥AE,AD⊥平面ABE,從而AE⊥BE,由VA﹣DBE=VD﹣ABE , 能求出三棱錐A﹣DBE的體積.(3)由AE⊥BE,AD⊥BE,得到∠DEA是二面角D﹣BE﹣A的平面角,由此能求出二面角D﹣BE﹣A的大。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定的相關(guān)知識(shí)可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),.
(Ⅰ)當(dāng)時(shí),求曲線在處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期為π
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f( ﹣ )= ,f( ﹣ )= ,且α、β∈(﹣ ),求cos(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S﹣ABCD中,SA⊥面ABCD,若四邊形ABCD為邊長(zhǎng)為2的正方形,SA=3,則此四棱錐外接球的表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足 .
(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列),若為等比數(shù)列,則稱具有性質(zhì).
(1)若數(shù)列具有性質(zhì),且,求、的值;
(2)若,求證:數(shù)列具有性質(zhì);
(3)設(shè),數(shù)列具有性質(zhì),其中,若,求正整數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中, ).
(1)若函數(shù)在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(3)當(dāng)時(shí),求證:對(duì)于任意大于1的正整數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=2,Sn=n2+n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){ }的前n項(xiàng)和為Tn , 求證Tn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x= 時(shí),函數(shù)f(x)取得最小值,則下列結(jié)論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com