分析 由題意設(shè)出直線AB的方程,聯(lián)立直線和拋物線方程,求出A,B的橫坐標(biāo),由|AF|=3|BF|得到x1=3x2+2,代入A,B的坐標(biāo)得答案.
解答 解:由y2=4x,得F(1,0),
設(shè)AB所在直線方程為y=k(x-1),
聯(lián)立y2=4x,得k2x2-(2k2+4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),
結(jié)合|AF|=3|BF|,
解方程得:x1=$\frac{{k}^{2}+2}{{k}^{2}}$+$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$,x2=$\frac{{k}^{2}+2}{{k}^{2}}$-$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$.
再由|AF|=3|BF|,
得x1+1=3(x2+1),即
x1=3x2+2,
∴$\frac{{k}^{2}+2}{{k}^{2}}$+$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$=3($\frac{{k}^{2}+2}{{k}^{2}}$-$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$)+2,
解得:k=±$\sqrt{3}$.
故答案為:±$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了拋物線的簡(jiǎn)單幾何性質(zhì),考查了拋物線的定義,考查了學(xué)生的計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 任意兩個(gè)復(fù)數(shù)均不能比較大小 | |
B. | 復(fù)數(shù)z為實(shí)數(shù)的充要條件是$z=\overline z$ | |
C. | 復(fù)數(shù)z=3+2i在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第二象限 | |
D. | 復(fù)數(shù)i+3的共軛復(fù)數(shù)為i-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=(1+ex)cosx+exsinx | B. | y′=cosx+exsinx | ||
C. | y′=(1+ex)cosx-exsinx | D. | y′=cosx-exsinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) | B. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
C. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | D. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com