設(shè)函數(shù).
(1)用反證法證明:函數(shù)不可能為偶函數(shù);
(2)求證:函數(shù)在上單調(diào)遞減的充要條件是.
(1)祥見解析;(2) 祥見解析.
解析試題分析:(1)反證法證明的一般步驟是:先假設(shè)結(jié)論不正確,從而肯定結(jié)論的反面一定成立,在此基礎(chǔ)上結(jié)合題目已知條件,經(jīng)過正確的推理論證得到一個矛盾,從而得到假設(shè)不成立,所以結(jié)論正確;此題只需假設(shè)假設(shè)函數(shù)是偶函數(shù),既然是偶函數(shù),則對定義域內(nèi)的一切x都有成立,那么我們?yōu)榱苏f明假設(shè)不成立,即 不可能成立,只需任取一個特殊值代入檢驗(yàn)即可;(2)由于是證明函數(shù)在上單調(diào)遞減的充要條件是:;應(yīng)分充分性和必要性兩個方面來加以證明,先證充分性:來證明一定成立;再證必要性:由函數(shù)在上單調(diào)遞減在上恒成立,來證明即可,注意已知中的這一條件.
試題解析:(1)假設(shè)函數(shù)是偶函數(shù), 2分
則,即,解得, 4分
這與矛盾,所以函數(shù)不可能是偶函數(shù). 6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e6/1/a1ztm3.png" style="vertical-align:middle;" />,所以. 8分
①充分性:當(dāng)時(shí),,
所以函數(shù)在單調(diào)遞減; 10分
②必要性:當(dāng)函數(shù)在單調(diào)遞減時(shí),
有,即,又,所以. 13分
綜合①②知,原命題成立. 14分
(說明:用函數(shù)單調(diào)性的定義證明的,類似給分;用反比例函數(shù)圖象說理的,適當(dāng)扣分)
考點(diǎn):1.反證法;2.函數(shù)的單調(diào)性;3.充要性的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,),.
(1)求函數(shù)的單調(diào)區(qū)間,并確定其零點(diǎn)個數(shù);
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(3)證明不等式 ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/8/1kueu4.png" style="vertical-align:middle;" />,.
(1)求集合;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在上的三個函數(shù),,,且在處取得極值.
(1)求a的值及函數(shù)的單調(diào)區(qū)間.
(2)求證:當(dāng)時(shí),恒有成立.[來源
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(1) 若的解集是,求實(shí)數(shù)的值;(2) 若且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
某企業(yè)投資72萬元興建一座環(huán)保建材廠. 第1年各種經(jīng)營成本為12萬元,以后每年的經(jīng)營成本增加4萬元,每年銷售環(huán)保建材的收入為50萬元. 則該廠獲取的純利潤達(dá)到最大值時(shí)是在第 年.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1.兩街道相交的點(diǎn)稱為格點(diǎn).若以互相垂直的兩條街道為軸建立直角坐標(biāo)系,現(xiàn)有下述格點(diǎn),,,,,為報(bào)刊零售點(diǎn).請確定一個格點(diǎn)(除零售點(diǎn)外)__________為發(fā)行站,使6個零售點(diǎn)沿街道到發(fā)行站之間路程的和最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)f(x)=,若關(guān)于x的方程2[f(x)]2-(2a+3)·f(x)+3a=0有五個不同的實(shí)數(shù)解,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com