給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過(guò)點(diǎn)F的直線l與C相交于A、B兩點(diǎn)。

(Ⅰ)設(shè)l的斜率為1,求的夾角的大;

(Ⅱ)設(shè),若λ∈[4,9],求l在y軸上截距的變化范圍.

本小題主要考查拋物線的性質(zhì),直線與拋物線的關(guān)系以及解析幾何的基本方法、思想和綜合解題能力。滿分12分。

解:(Ⅰ)C的焦點(diǎn)為F(1,0),直線l的斜率為1,所以l的方程為

代入方程,并整理得  

設(shè)則有  

所以夾角的大小為

(Ⅱ)由題設(shè) 得  

 

由②得,  ∵    ∴

聯(lián)立①、③解得,依題意有

又F(1,0),得直線l方程為

  

當(dāng)時(shí),l在方程y軸上的截距為

由     可知在[4,9]上是遞減的,

直線l在y軸上截距的變化范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過(guò)點(diǎn)F的直線l與C相交于A、B兩點(diǎn),記O為坐標(biāo)原點(diǎn).
(1)求
OA
OB
的值;
(2)設(shè)
AF
FB
,當(dāng)三角形OAB的面積S∈[2,
5
]時(shí),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過(guò)點(diǎn)F的直線l與C相交于A、B兩點(diǎn).
(Ⅰ)設(shè)l的斜率為1,求
OA
OB
夾角的大;
(Ⅱ)設(shè)
FB
=λ
AF
,若λ∈[4,9],求l在y軸上截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定拋物線C:y2=4x,F(xiàn)是C的焦點(diǎn),過(guò)點(diǎn)F的直線l與C相交于A、B兩點(diǎn).設(shè)l的斜率為1,則
.
OA
.
OB
夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定拋物線C:y2=4x,F(xiàn)是其焦點(diǎn),過(guò)F的直線l:y=k(x-1),它與C相交于A、B兩點(diǎn).如果
FB
AF
λ∈[
1
16
,
1
4
]
.那么k的變化范圍是( 。
A、[
8
15
,
4
3
]
B、[-
4
3
,-
8
15
]
C、[
8
15
,
4
3
]∪[-
4
3
,-
8
15
]
D、(-∞,-
4
3
]∪[
8
15
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定拋物線c:y2=4x,F(xiàn)是c的焦點(diǎn),過(guò)點(diǎn)F的直線l與c相交于A,B兩點(diǎn).
(1)設(shè)l的斜率為1,求
OA
OB
夾角的余弦值;
(2)設(shè)
FB
=λ
AF
,若λ∈[4,9],求l在y軸上的截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案