【題目】已知圓:的圓心為,圓:的圓心為,一動圓與圓內(nèi)切,與圓外切.
(1)求動圓圓心的軌跡方程;
(2)過點的直線與曲線交于,兩點,點是直線上任意點,直線,,的斜率分別為,,,試探求,,的關(guān)系,并給出證明.
【答案】(1);(2),,成等差數(shù)列,證明見解析.
【解析】
(1)根據(jù)兩圓的位置關(guān)系,得到,從而得到橢圓的長軸和焦距,求出橢圓的方程;(2)當(dāng)斜率為時,得到,當(dāng)斜率不為,設(shè)的方程設(shè)為,與橢圓聯(lián)立,得到,,再表示出并進行化簡,得到,從而得到結(jié)論.
(1)設(shè)動圓的半徑為,動圓與圓內(nèi)切,與圓外切.
則,.
兩式相加得,
由橢圓定義知,點的軌跡是以、為焦點,
焦距為,長軸長為
即,,所以
的橢圓其方程為.
(2)設(shè),,,
若斜率為,則,,
得,,,所以,
故猜想,,成等差數(shù)列,
設(shè)直線的方程設(shè)為,
由,消去得,
則有,,
,,,
,
又,,所以,,
所以
,
,
所以可以得到,,
所以,綜上所述,,,成等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù)f(x)=|2x+2|+|x﹣a|的最小值為2.
(1)求實數(shù)a的值,并作出y=f(x)的圖象;
(2)當(dāng)m>0,n>0,且m+n=2時,m2+n2≥f(x)恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年7月1日迎來了我國建黨98周年,6名老黨員在這天相約來到革命圣地之一的西柏坡.6名老黨員中有3名黨員當(dāng)年在同一個班,他們站成一排拍照留念時,要求同班的3名黨員站在一起,且滿足條件的每種排法都要拍一張照片,若將照片洗出來,每張照片0.5元(不含過塑費),且有一半的照片需要過塑,每張過塑費為0.75元.若將這些照片平均分給每名老黨員(過塑的照片也要平均分),則每名老黨員需要支付的照片費為( )
A.20.5B.21元C.21.5元D.22元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在中秋節(jié)期間的月餅購買量單位:進行了問卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費者月餅購買量在的概率;
已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費者的人均月餅購買量估計該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房產(chǎn)中介統(tǒng)計了深圳市某高檔小區(qū)從2018年12月至2019年11月當(dāng)月在售二手房均價(單位:萬元/平方米)的散點圖,如下圖所示,圖中月份代碼1至12分別對應(yīng)2018年12月至2019年11月的相應(yīng)月份.
根據(jù)散點圖選擇和兩個模型進行擬合,根據(jù)數(shù)據(jù)處理得到兩個回歸方程分別為和,并得到以下一些統(tǒng)計量的值:
殘差平方和 | 0.0148557 | 0.0048781 |
總偏差平方和 | 0.069193 |
(1)請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好;
(2)某位購房者擬于2020年5月份購買深圳市福田區(qū)平方米的二手房(欲購房為其家庭首套房).若該小區(qū)所有住房的房產(chǎn)證均已滿3年,請你利用(1)中擬合效果更好的模型解決以下問題:
(i)估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費;房屋均價精確到0.01萬元/平方米)
(ii)若該購房者擬用不超過760萬元的資金購買該小區(qū)一套二手房,試估算其可購買的最大面積(精確到1平方米)
附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項稅費,稅費是按照房屋的計稅價格進行征收.(計稅價格=房款)
征收方式見下表:
購買首套房面積(平方米) | |||
契稅(買方繳納)的稅率 |
參考數(shù)據(jù):,,,,,,,,
參考公式:相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點的極坐標(biāo)為,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點在上,點在上(異于極點),若四點依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求的極值;
(2)若對任意的,當(dāng)時,恒成立,求實數(shù)的最大值;
(3)若函數(shù)恰有兩個不相等的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若項數(shù)為的單調(diào)增數(shù)列滿足:①;②對任意,存在使得;則稱數(shù)列具有性質(zhì).
(1)分別判斷數(shù)列1,3,4,7和1,2,3,5是否具有性質(zhì),并說明理由;
(2)若數(shù)列具有性質(zhì),且.
(i)證明數(shù)列的項數(shù);
(ii)求數(shù)列中所有項的和的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com