【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.
【答案】
(1)解:由正弦定理設(shè)
則 = = =
整理求得sin(A+B)=2sin(B+C)
又A+B+C=π
∴sinC=2sinA,即 =2
(2)解:由余弦定理可知cosB= = ①
由(1)可知 = =2②
再由b=2,①②聯(lián)立求得c=2,a=1
sinB= =
∴S= acsinB=
【解析】(1)利用正弦定理把題設(shè)等式中的邊轉(zhuǎn)化成角的正弦,整理后可求得sinC和sinA的關(guān)系式,則 的值可得.(2)先通過余弦定理可求得a和c的關(guān)系式,同時利用(1)中的結(jié)論和正弦定理求得a和c的另一關(guān)系式,最后聯(lián)立求得a和c,利用三角形面積公式即可求得答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》是中央電視臺最近推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會期間,教育部部長陳寶生答記者問時就給予其高度評價.基于這樣的背景,山東某中學(xué)積極響應(yīng),也舉行了一次詩詞競賽.組委會在競賽后,從中抽取了部分選手的成績(百分制),作為樣本進行統(tǒng)計,作出了圖1的頻率分布直方圖和圖2的莖葉圖(但中間三行污損,看不清數(shù)據(jù)).
(I)求樣本容量和頻率分布直方圖中的,的值;
(II)分?jǐn)?shù)在[80,90)的學(xué)生中,男生有2人,現(xiàn)從該組抽取三人“座談”,寫出基本事件空間并求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞市某高級中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限(單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:
(1)請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護費用關(guān)于的線性回歸方程;
(2)若規(guī)定當(dāng)維護費用超過13.1萬元時,該批空調(diào)必須報廢,試根據(jù)(1)的結(jié)論預(yù)測該批空調(diào)使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:
, ,其中表示樣本均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓與軸負半軸交于點,過點的直線,分別與圓交于,兩點.
(Ⅰ)若,,求的面積;
(Ⅱ)若直線過點,證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為實常數(shù).
(Ⅰ)設(shè),當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,直線、與函數(shù)、的圖象一共有四個不同的交點,且以此四點為頂點的四邊形恰為平行四邊形.
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時,直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com