已知平面向量|
a
|,|
b
|滿足|
a
|=4,|
b
|=3,向量
a
b
的夾角是60°,則|
a
+
b
|=(  )
A、
13
B、
15
C、
19
D、
37
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義和性質(zhì)即可得出.
解答: 解:∵|
a
|
=44,|
b
|
=3,向量
a
b
的夾角是60°
a
b
=|
a
|•|
b
|cos θ=4×3×
1
2
=6.
(
a
+
b
)2
=
a
2
+
b
2
+2
a
b
=42+32+2×6=37,
∴|
a
+
b
|=
37

故選:D.
點評:本題考查了數(shù)量積的定義和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin(
π
2
-x)=-
3
2
,且π<x<2π,則x等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
,且
a
=(-2,1),
b
=(1,λ)且
a
b
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個正四面體沿各棱的中點截去四個小三棱錐后得到一個新幾何體,將此幾何體的任意兩個頂點連成一條線段,則其位于原四面體表面的概率為(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,點O是原點,若|AF|=3,則△AOF的面積為( 。
A、
2
2
B、
2
C、
3
2
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題中,正確的有幾個( 。
①直線a,b與平面a所成角相等,則a∥b;
②兩直線a∥b,直線a∥平面a,則必有b∥平面a;
③一直線與平面的一斜線在平面a內(nèi)的射影垂直,則該直線必與斜線垂直;
④兩點A,B與平面a的距離相等,則直線AB∥平面a.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間加工零件的數(shù)量x與加工時間y的統(tǒng)計數(shù)據(jù)如表
零件數(shù)x(個)102030
加工時間y(分鐘)223038
現(xiàn)已求得如表數(shù)據(jù)的回歸方程
y
=
b
x+
a
b
值為0.9,則據(jù)此回歸模型可以預(yù)測,加工100個零件所需要的加工時間約為( 。
A、84分鐘B、94分鐘
C、102分鐘D、112分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正奇數(shù)按下表排列,則數(shù)字2013在( 。
   第一列  第二列  第三列  第四列  第五列
 第一行    1  3  5  7
 第二行  15  13  11  9  
 第三行    17  19  21  23
 第四行  31  29  27  25  
A、第252行,第2列
B、第252行,第3列
C、第153行,第3列
D、第253行,第4列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如表提供的某廠生產(chǎn)A產(chǎn)品過程中產(chǎn)量x(噸)與相應(yīng)原料消耗y(噸)的對應(yīng)數(shù)據(jù):
x 3 4 5 6
y 2.5 t 4 4.5
求得y關(guān)于x的線性回歸方程為
y
=0.7x+0.35,那么表中t的值為( 。
A、3B、3.15
C、3.5D、4.5

查看答案和解析>>

同步練習(xí)冊答案