7.用輾轉(zhuǎn)相除法求80和36的最大公約數(shù),并用更相減損術(shù)檢驗所得結(jié)果.

分析 利用輾轉(zhuǎn)相除法與更相減損術(shù)求兩個數(shù)的最大公約數(shù)即可得出.

解答 解:80=36×2+8,
36=8×4+4,
8=4×2.
∴80和36的最大公約數(shù)是4.
用更相減損術(shù)檢驗:
80-36=44,
44-36=8,
36-8=28,
28-8=20,
20-8=12,
12-8=4,
8-4=4.
∴80和36的最大公約數(shù)是4.

點(diǎn)評 本題考查了輾轉(zhuǎn)相除法與更相減損術(shù)求兩個數(shù)的最大公約數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,所有棱長都相等,若該三棱柱的頂點(diǎn)都在球O的表面上,且三棱柱的體積為$\frac{9}{4}$,則球O的表面積為7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線y=x+2的最小距離為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖:已知四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=60°,且C1C=CD=1.
(1)試用$\overrightarrow{CD}$,$\overrightarrow{CB}$,$\overrightarrow{C{C}_{1}}$表示$\overrightarrow{C{A_1}}$,并求|${\overrightarrow{C{A_1}}}$|;
(2)求證:CC1⊥BD;
(3)試判斷直線A1C與面C1BD是否垂直,若垂直,給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知極坐標(biāo)的極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,且長度單位相同.曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn)E,求$\frac{1}{|EA|}$+$\frac{1}{|EB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)當(dāng)a=3,b=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤$\frac{1}{8}$恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=b=0時,令H(x)=f(x)-$\frac{1}{x}$,G(x)=mx,若H(x)與G(x)的圖象有兩個交點(diǎn)A(x1,y1),B(x2,y2),求證:x1x2>2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.△ABC的內(nèi)角為A、B、C,其中A=$\frac{π}{4}$,cosC=$\frac{3\sqrt{10}}{10}$,BC=$\sqrt{10}$.點(diǎn)D是邊AC的中點(diǎn),則中線BD的長為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)橢圓$M:\frac{x^2}{{2{c^2}}}+\frac{y^2}{c^2}=1$,其中c>0.
(1)若橢圓M的焦點(diǎn)為F1、F2,且$|{{F_1}{F_2}}|=2\sqrt{6},P$為M上一點(diǎn),求|PF1|+|PF2|的值;
(2)如圖所示,A是橢圓上一點(diǎn),且A在第二象限,A與B關(guān)于原點(diǎn)對稱,C在x軸上,且AB與x軸垂直,若$\overrightarrow{CA}•\overrightarrow{CB}=-4$,△ABC的面積為4.
(1)求橢圓M的方程;
(2)若直線l與橢圓M交于P、Q,且四邊形APCQ為平行四邊形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案