直線y=kx+1與雙曲線x2-y2=1的左支交于A、B兩點(diǎn),直線l經(jīng)過點(diǎn)(-2,0)及AB中點(diǎn),求直線l在y軸上截距b的取值范圍.

解析:將y=kx+1代入雙曲線方程x2-y2=1,

整理得(1-k2)x2-2kx-2=0.                                    (*)

∵直線與雙曲線左支交于兩點(diǎn),如圖所示.

∴方程(*)有兩相異負(fù)根.

解得1<k<,AB中點(diǎn)為().

∴直線l的斜率為.∴l(xiāng)的方程為y=.

令x=0,得b=.

∵1<k<,

-2<-2(k-)2+<1.

∴b的范圍是(-∞,-2-)∪(2,+∞).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線C:數(shù)學(xué)公式的虛軸長為2數(shù)學(xué)公式,漸近線方程是y=數(shù)學(xué)公式,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且數(shù)學(xué)公式
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)雙曲線C:的虛軸長為2,漸近線方程是y=,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案