【題目】隨著2022年北京冬奧會的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運動人數(shù)快速上升,冰雪運動市場需求得到釋放.如圖是2012-2018年中國雪場滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計圖.則下面結(jié)論中正確的是( )

2012-2018年,中國雪場滑雪人數(shù)逐年增加;②2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加;③中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;④2016-2018年,中國雪場滑雪人數(shù)的增長率約為23.4%.

A.①②③B.②③④C.①②D.③④

【答案】C

【解析】

根據(jù)圖中條形統(tǒng)計圖與折線圖的實際意義分析逐個判定即可.

對①,由條狀圖可知, 中國雪場滑雪人數(shù)逐年增加正確.故①正確.

對②, 2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加正確. 故②正確.

對③,中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,但2018年同比增長率為

,相比 2017年同比增長率為有所下降.故③錯誤.

對④, 2016-2018年,中國雪場滑雪人數(shù)的增長率為.故④錯誤.

故①②正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個盒中有形狀、大小、質(zhì)地完全相同的5張撲克牌,其中3張紅桃,1張黑桃,1張梅花.現(xiàn)從盒中一次性隨機抽出2張撲克牌,則這2張撲克牌花色不同的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,的中點,平行于,平行于面,.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點,且

(1)求橢圓的方程;

(2)設點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)設的內(nèi)角的對應邊分別為,且若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電動車生產(chǎn)企業(yè),上年度生產(chǎn)電動車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應市場需求,計劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為,則出廠價相應提高的比例為,且當不超過0.5時,預計年銷售量增加的比例為,而當超過0.5時,預計年銷售量不變.已知年利潤=(出廠價-投入成本)×年銷售量.則本年度預計的年利潤與投入成本增加的比例的關系式為______;為使本年度利潤比上年有所增加,投入成本增加的比例的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,側(cè)面ABB1A1是菱形,且CACB1

1)證明:面CBA1⊥面CB1A;

2)若∠BAA160°,A1CBCBA1,求二面角CA1B1C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)當時,求證:過原點且與曲線相切的直線有且只有一條;

2)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為2,且長軸長是短軸長的.

1)求橢圓的標準方程;

2)若過橢圓左焦點的直線交橢圓兩點,點軸非負半軸上,且點到坐標原點的距離為2,求取得最大值時的面積.

查看答案和解析>>

同步練習冊答案