【題目】我國古代有著輝煌的數(shù)學研究成果.《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、…、《輯古算經》等算經10部專著,有著十分豐富多彩的內容,是了解我國古代數(shù)學的重要文獻.這10部專著中有7部產生于魏晉南北朝時期.某中學擬從這10部名著中選擇2部作為“數(shù)學文化”校本課程學習內容,則所選2部名著中至少有一部是魏晉南北朝時期的名著的概率為( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】將三項式(x2+x+1)n展開,當n=0,1,2,3,…時,得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
…
觀察多項式系數(shù)之間的關系,可以仿照楊輝三角構造如圖所示的廣義楊輝三角形,其構造方法為:第0行為1,以下各行每個數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計為0)之和,第k行共有2k+1個數(shù).若在(1+ax)(x2+x+1)5的展開式中,x7項的系數(shù)為75,則實數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若曲線C1:x2+y2﹣4x=0與曲線C2:y(y﹣mx﹣x)=0有四個不同的交點,則實數(shù)m的取值范圍是( )
A.(﹣ , )
B.(﹣ ,0)∪(0, )
C.[﹣ , ]
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,x軸為極軸建立極坐標系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點.
(1)求|AB|的值;
(2)求點M(﹣1,2)到A、B兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160cm和184cm之間,將測量結果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖. (Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學期望.
參考數(shù)據(jù):若ξ﹣N(μ,σ2),則p(μ﹣σ<ξ≤μ+σ)=0.6826,p(μ﹣2σ<ξ≤μ+2σ)=0.9544,p(μ﹣3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤. (Ⅰ)視x分布在各區(qū)間內的頻率為相應的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場需求量落入100,110)的頻率),求T的分布列及數(shù)學期望E(T).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】閱讀如圖所示的程序框圖,則該算法的功能是( )
A.計算數(shù)列{2n﹣1}前5項的和
B.計算數(shù)列{2n﹣1}前5項的和
C.計算數(shù)列{2n﹣1}前6項的和
D.計算數(shù)列{2n﹣1}前6項的和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,AC∩EF=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖的五棱錐,且 .
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com