分析 (1)推導(dǎo)出DC⊥PC,DC⊥BC,從而DC⊥PB,再求出CF⊥PB,由此能證明PB⊥平面CDF.
(2)過(guò)點(diǎn)D作交BC于G,連接PG,當(dāng)N是AC與DG的交點(diǎn)時(shí),平面PDN∥平面BEM,由此能求出當(dāng)$\frac{CN}{AC}$=$\frac{1}{3}$時(shí),平面PDN∥平面BEM.
解答 證明:(1)∵PC⊥底面ABCD,底面ABCD是矩形,
∴DC⊥PC,DC⊥BC,又PC∩BC=C,∴DC⊥平面PBC,…(2分)
∴DC⊥PB.…(4分)
∵BC=PC,F(xiàn)為PB的中點(diǎn),∴CF⊥PB.…(5分)
∵DC∩CF=C,∴PB⊥平面CDF.…(6分)
解:(2)過(guò)點(diǎn)D作交BC于G,連接PG,…(7分)
∵M(jìn)是AD的中點(diǎn),∴EM∥PD,…(8分)
∵PD∩DG=D,∴平面PDG∥平面BEM,…(9分)
∴當(dāng)N是AC與DG的交點(diǎn)時(shí),平面PDN∥平面BEM,…(10分)
∴在矩形ABCD中,由題意得$\frac{CN}{AC}=\frac{1}{3}$.
故當(dāng)$\frac{CN}{AC}$=$\frac{1}{3}$時(shí),平面PDN∥平面BEM.…(12分)
點(diǎn)評(píng) 本題考查線面垂直的證明,考查滿足面面平行的點(diǎn)的位置的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m∥n,n∥α⇒m∥α | B. | α⊥β,α∩β=m,l⊥m⇒l⊥β | ||
C. | l⊥m,l⊥n,m?α,n?α⇒l⊥α | D. | m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{\sqrt{3}}}{6}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2a-1 | B. | 2-a-1 | C. | 1-2-a | D. | 1-2a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com