(本小題滿分12分)已知數(shù)列的前n項(xiàng)和,且是與1的等差中項(xiàng)。
(1)求數(shù)列和數(shù)列的通項(xiàng)公式;
(2)若,求
(3)若,是否存在,使得并說(shuō)明理由。
(1)(2)(3)當(dāng)n為奇數(shù)時(shí),由已知得2n+19=2n-2,矛盾。當(dāng)n為偶數(shù)時(shí),由已知得n+10=4n-6,矛盾。
所以滿足條件的n不存在。
解析試題分析:(1)時(shí),,時(shí),,綜上,是與1的等差中項(xiàng)
(2)
(3)
當(dāng)n為奇數(shù)時(shí),由已知得2n+19=2n-2,n無(wú)解
當(dāng)n為偶數(shù)時(shí),由已知得n+10=4n-6,
所以滿足條件的n不存在
考點(diǎn):數(shù)列求通項(xiàng)求前n項(xiàng)和
點(diǎn)評(píng):由數(shù)列的求通項(xiàng)時(shí)需分與兩種情況討論,,第二問(wèn)一般數(shù)列求和采用的是裂項(xiàng)相消的方法,適用于通項(xiàng)為形式的數(shù)列
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列中,,前項(xiàng)的和為,對(duì)任意的,,,總成等差數(shù)列.
(1)求的值并猜想數(shù)列的通項(xiàng)公式
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知數(shù)列為公差不為的等差數(shù)列,為前項(xiàng)和,和的等差中項(xiàng)為,且.令數(shù)列的前項(xiàng)和為.
(Ⅰ)求及;
(Ⅱ)是否存在正整數(shù)成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
在數(shù)列中,已知.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)設(shè)數(shù)列滿足,求的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足:,其中為的前n項(xiàng)和.
(1)求的通項(xiàng)公式;
(2)若數(shù)列滿足,求的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知數(shù)列滿足,數(shù)列滿足,
數(shù)列滿足.
(1)若,證明數(shù)列為等比數(shù)列;
(2)在(1)的條件下,求數(shù)列的通項(xiàng)公式;
(3)若,證明數(shù)列的前項(xiàng)和滿足。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)設(shè)數(shù)列的前項(xiàng)和為.已知,,.
(1)寫出的值,并求數(shù)列的通項(xiàng)公式;
(2)記為數(shù)列的前項(xiàng)和,求;
(3)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知等差數(shù)列中,.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)調(diào)整數(shù)列的前三項(xiàng)的順序,使它成為等比數(shù)列的前三項(xiàng),求的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com