10.已知正方形ABCD邊長(zhǎng)為2,E為AB邊上一點(diǎn),則$\overrightarrow{ED}$•$\overrightarrow{EC}$的最小值為3.

分析 以B點(diǎn)為原點(diǎn),建立如圖所示的坐標(biāo)系,根據(jù)向量的坐標(biāo)運(yùn)算即可求出答案.

解答 解:以B點(diǎn)為原點(diǎn),建立如圖所示的坐標(biāo)系,
∵正方形ABCD的邊長(zhǎng)為2,點(diǎn)E是AB邊上的點(diǎn),
設(shè)E(0,y),則y∈[0,2];
又D(2,2),C(2,0),
∴$\overrightarrow{ED}$=(2,2-y),$\overrightarrow{EC}$=(2,-y),
∴$\overrightarrow{ED}$•$\overrightarrow{EC}$=2×2+(2-y)×(-y)=y2-2y+4=(y-1)2+3,
當(dāng)y=1時(shí),$\overrightarrow{ED}$•$\overrightarrow{EC}$取得最小值為3.
故答案為:3.

點(diǎn)評(píng) 本題考查向量數(shù)量積的計(jì)算問題,解題時(shí)要注意數(shù)形結(jié)合法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P是橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$上一點(diǎn),F(xiàn)1和F2是焦點(diǎn),若$∠{F_1}P{F_2}={60^0}$,則△PF1F2的面積為( 。
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2015年10月十八屆五中全會(huì)決定2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策,為了了解適齡民眾對(duì)放開生育二胎政策的態(tài)度,某市進(jìn)行了一次民意調(diào)查,參與調(diào)查的100位市民中,年齡分布情況如圖所示,并得到適齡民眾對(duì)放開生育二胎政策的態(tài)度數(shù)據(jù)如表:
生二胎不生二胎合計(jì)
25~35歲451055
35~50歲301545
合計(jì)7525100
(1)填寫上面的2×2列聯(lián)表;
(2)根據(jù)調(diào)查數(shù)據(jù),有多少的把握認(rèn)為“生二胎與年齡有關(guān)”,說明理由;
(3)調(diào)查對(duì)象中決定生二胎的民眾有六人分別來自三個(gè)不同的家庭且為父子,各自家庭都有一個(gè)約定:父親先生二胎,然后兒子生二胎,則這個(gè)三個(gè)家庭“二胎出生的日期的先后順序”有多少種?
參考數(shù)據(jù):
 P(K2>k) 0.15 0.10 0.05 0.010
 k2.072 2.076 3.841 6.635
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在等邊△ABC中,D,E,F(xiàn)分別為AB,AC,BC的中點(diǎn).將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF.

(Ⅰ)證明:AF⊥BC;
(Ⅱ)當(dāng)∠BFC=120°時(shí),求二面角A-DE-F的余弦值;
(Ⅲ)在(Ⅱ)的條件下,在線段BC上是否存在一點(diǎn)N,使得平面ABF⊥平面FDN?若存在,求出$\frac{{|{BN}|}}{{|{BC}|}}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.圓C1:x2+(y-1)2=1和圓C2:x2-6x+y2-8y=0的位置關(guān)系為( 。
A.相交B.內(nèi)切C.外切D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)A時(shí)拋物線M:x2=2py(p>0)與圓N:(x+2)2+y2=r2在第二象限的一個(gè)公共點(diǎn),滿足點(diǎn)A到拋物線M準(zhǔn)線的距離為r,若拋物線M上動(dòng)點(diǎn)到其準(zhǔn)線的距離與到點(diǎn)N的距離之和最小值為2r,則p=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線m,n和平面α,如果n?α,那么“m⊥n”是“m⊥α”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,四邊形ABCD是一個(gè)5×4的方格紙,向此四邊形內(nèi)拋撒一粒小豆子,則小豆子恰好落在陰影部分內(nèi)的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=$\sqrt{lo{g}_{0.5}(3x-2)}$的定義域是( 。
A.[1,+∞)B.(1,+∞)C.(0,1]D.($\frac{2}{3}$,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案