【題目】已知m,n是兩條不同直線,,是兩個不同平面,則下列命題正確的是
A.若,垂直于同一平面,則與平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
【答案】D
【解析】由A,若與垂直于同一平面,則,可以相交、平行,故A不正確;由B,若m,n平行于同一平面,則m,n可以平行、重合、相交、異面,故B,不正確;由C,若,不平行,但平面內(nèi)會存在平行于的直線,如平面中平行于,交線的直線;由D項,其逆命題為‘’若m與n垂直于同一平面,則m,n平行‘’是真命題,故D項正確,所以選D
【考點精析】通過靈活運用空間中直線與平面之間的位置關系和直線與平面平行的判定,掌握直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點;平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項式anxn+an﹣1xn﹣1+…+a1x+a0 , 當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進行求值.運行如圖所示的程序框圖,能求得多項式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F(xiàn)為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間直角坐標系中,已知A(3,0,1)和B(1,0,-3),試問
(1)在y軸上是否存在點M,滿足 ?
(2)在y軸上是否存在點M,使△MAB為等邊三角形?若存在,試求出點M坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)g(x)=﹣2x2+6x﹣1,則:
(1)其對稱軸:;
(2)頂點坐標為;
(3)單調(diào)區(qū)間為和;
(4)g(x)的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com