【題目】

如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC

)求證:PA∥平面QBC;

)若,求二面角Q-PB-A的余弦值.

【答案】(1)通過已知中的平面平面,那么結(jié)合平面,和平面,從而得到線線平行,利用線面平行的性質(zhì)來證明.

(2)

【解析】

試題解:(I)證明:過點于點

平面平面平面

平面

平面

平面

平面

的中點,連結(jié),則

平面

四邊形是矩形

于點,

,

中點,連結(jié),取的中點,連結(jié)

為二面角的平面角

連結(jié),則

即二面角的余弦值為

方法二:

I)同方法一

平面

,又

的中點,連結(jié),則

平面,

四邊形是矩形

分別以軸建立空間直角坐標系

,則,,,

設平面的法向量為

,

平面的法向量為

設二面角,則

二面角是鈍角

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線和曲線,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.

(1)求曲線和曲線的直角坐標方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】基于移動網(wǎng)絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請用相關系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:

車型 報廢年限

1年

2年

3年

4年

總計

10

30

40

20

100

15

40

35

10

100

經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?

參考數(shù)據(jù):,,.

參考公式:相關系數(shù),.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日,小劉從各個渠道融資萬元,在某大學投資一個咖啡店,日正式開業(yè),已知開業(yè)第一年運營成本為萬元,由于工人工資不斷增加及設備維修等,以后每年成本增加萬元,若每年的銷售額為萬元,用數(shù)列表示前年的純收入.(注:純收入年的總收入年的總支出投資額)

1)試求年平均利潤最大時的年份(年份取正整數(shù))并求出最大值.

2)若前年的收入達到最大值時,小劉計劃用前年總收入的對咖啡店進行重新裝修,請問:小劉最早從哪一年對咖啡店進行重新裝修(年份取整數(shù))?并求小劉計劃裝修的費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過拋物線C的焦點F作互相垂直的兩條直線AB,CD,與拋物線C分別相交于ABCD,點ACx軸上方.

1)若直線AB的傾斜角為,求的值;

2)設的面積之和為S,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若不等式對任意的恒成立,求實數(shù)的取值范圍;

2)記表示中的最小值,若函數(shù)內(nèi)恰有一個零點,求實的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)記,試判斷函數(shù)的極值點的情況;

(Ⅱ)若有且僅有兩個整數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年暑期都會有大量中學生參加名校游學,夏令營等活動,某中學學生社團將其今年的社會實踐主題定為“中學生暑期游學支出分析”,并在該市各個中學隨機抽取了共名中學生進行問卷調(diào)查,根據(jù)問卷調(diào)查發(fā)現(xiàn)共名中學生參與了各類游學、夏令營等活動,從中統(tǒng)計得到中學生暑期游學支出(單位:百元)頻率分布方圖如圖.

I)求實數(shù)的值;

(Ⅱ)在,三組中利用分層抽樣抽取人,并從抽取的人中隨機選出人,對其消費情況進行進一步分析.

i)求每組恰好各被選出人的概率;

ii)設為選出的人中這一組的人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若關于x的方程有四個不等實根,且恒成立,則實數(shù)的最小值為________.

查看答案和解析>>

同步練習冊答案