下列函數(shù)滿(mǎn)足性質(zhì):“f(-x)=f(x)”的函數(shù)是(  )
A、f(x)=x-1
B、f(x)=-x2+x
C、f(x)=2x-2-x
D、f(x)=2x+2-x
考點(diǎn):函數(shù)奇偶性的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件確定哈納斯為偶函數(shù),分別進(jìn)行判斷即可.
解答: 解:若函數(shù)滿(mǎn)足性質(zhì):“f(-x)=f(x)”,
則函數(shù)f(x)為偶函數(shù),
則A.f(x)=x-1為非奇非偶函數(shù),
B.f(x)=-x2+x為非奇非偶函數(shù),
C.f(-x)=2-X-2x=-(2x-2-x)=-f(x),函數(shù)為奇函數(shù),
D.f(-x)=2-X+2x=f(x),函數(shù)為偶函數(shù).
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,根據(jù)奇偶性的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.直線(xiàn)l的極坐標(biāo)方程為ρcos(θ-
π
3
)=
a-b
2
,與曲線(xiàn)C:ρ=
2
交于A,B兩點(diǎn),已知|AB|≥
6

(1)求直線(xiàn)l與曲線(xiàn)C的直角坐標(biāo)方程;
(2)若動(dòng)點(diǎn)P(a,b)在曲線(xiàn)C圍城的區(qū)域內(nèi)運(yùn)動(dòng),求點(diǎn)P所表示的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)三點(diǎn)(0,0)(1,1)(4,2)的圓的圓心坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-a
2x
,x∈R,其中a≠0.
(1)當(dāng)a=1時(shí),求f(f(0))的值;
(2)證明:當(dāng)a>0時(shí),函數(shù)f(x)在(-∞,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)W:y2=4x的焦點(diǎn)為F,過(guò)F的直線(xiàn)與W相交于A,B兩點(diǎn),記點(diǎn)F到直線(xiàn)l:x=-1的距離為d,則有(  )
A、|AB|≥2d
B、|AB|=2d
C、|AB|≤2d
D、|AB|<2d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列有關(guān)命題的說(shuō)法正確的是(  )
A、命題“若x2=1,則下”的否命題為:“若x2=1,則x≠1”
B、若p∨q為真命題,則p,q均為真命題
C、命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0”
D、命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ln(x+2)-
1
x
的零點(diǎn)所在區(qū)間為(k,k+1)(其中k為整數(shù)),則k的值為( 。
A、0B、1C、-2D、0或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x-sin2x+2
3
sinxcosx.
(1)求f(x)的最小正周期;
(2)若f(
α
3
)=
3
,且α∈(
π
3
,π),求cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=3n-2
(1)求(x-2y+3z) a3展開(kāi)式中形如Ax4yzt的項(xiàng)的系數(shù)A;
(2)記bn=
1
3
(an+2),求證:(C
 
0
bn
2+(C
 
1
bn
2+(C
 
2
bn
2+…+(C
 
bn
2bn
2=C
 
bn
2bn

查看答案和解析>>

同步練習(xí)冊(cè)答案