如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,直線PB與平面ABCD所成角為
π
4
,AB=2,BC=4,E是PD的中點.
(Ⅰ)求證:PB∥平面ACE;
(Ⅱ)求二面角E-AC-D的正切值;
(Ⅲ)求多面體PABCE的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定,二面角的平面角及求法
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(Ⅰ)連結(jié)BD交AC于O點,連結(jié)OE,利用矩形的性質(zhì)和三角形中位線定理可得PB∥OE,再用線面平行判定定理即可證出PB∥平面ACE;
(II)作EG∥PA交AD于G,由PA⊥平面ABCD.GH⊥AC于H,連接EH,進而可推斷出EG⊥平面ABCD.EH⊥AC,進而可知∠EHG即為二面角θ的平面角.進而根據(jù)E是PD的中點,從而G是AD的中點,分別求得EG和GH,進而可得二面角E-AC-D的正切值;
(Ⅲ)多面體PABCE的體積為VP-ABCD-VE-ACD
解答: (Ⅰ)證明:連結(jié)BD交AC于O點,連結(jié)OE
∵四邊形ABCD為矩形,∴O為BD的中點
可得在△PBD中,OE是中位線,∴PB∥OE
∵PB?平面ACE,OE?平面ACE,
∴PB∥平面ACE.
(II)解:作EG∥PA交AD于G,由PA⊥平面ABCD.
知EG⊥平面ABCD.
作GH⊥AC于H,連接EH,則EH⊥AC,
∴∠EHG即為二面角θ的平面角.
∵直線PB與平面ABCD所成角為
π
4
,AB=2,
∴PA=2,∴EG=1,
∵BC=4,∴AG=2,
∴GH=
5
5

∴tan∠EHG=
EG
GH
=
5

(Ⅲ)解:利用多面體PABCE的體積為長方體的體積減去三棱錐E-ACD的體積,可得多面體PABCE的體積
∵三棱錐E-ACD的底面三角形ADC中,AD=2,CD=1,高為1,
∴多面體PABCE的體積為VP-ABCD-VE-ACD=
1
3
×2×1×1
-
1
3
×
1
2
×2×1×
1
2
=
1
2
點評:本題在四棱錐中證明線面平行,并求直線與平面所成角大。乜疾榱司面平行判定定理、直線與平面所成角的定義與求法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=2n-l,n∈Z},B={x|x2一4x<0},則A∩B=( 。
A、{1}
B、{x|1<x<4}
C、{1,3}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
a
|=1,|
b
|=1,
(1)若
a
-2
b
a
垂直,求
a
b
的夾角;
(2)若
a
b
,且
c
=
a
+2x
b
,
d
=3x
a
+2
b
,若
c
d
的夾角為鈍角,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin4x+2
3
sinx•cosx-cos4x.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且f(A)=2,求
b+c
2a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,一個焦點與拋物線x2=4
2
y的焦點相同,點P(1,
2
)是橢圓C是一點,斜率為
2
的直線l交橢圓C于M,N兩點,且P,M,N三點不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線PM、PN的斜率分別為kPM、kPN,求證:kPM+kPN=0;
(Ⅲ)△PMN的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個盒子中裝有分別標有數(shù)字1、2、3、4的4個大小、形狀完全相同的小球,現(xiàn)從中有放回地隨機抽取2個小球,抽取的球的編號分別記為x1、x2,記ξ=|x1-1|+|x2-2|.
(Ⅰ)求ξ取最大值的概率;
(Ⅱ)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x3+x2,x<1
alnx,x≥1
,其中a為實常數(shù),且a≠0.
(Ⅰ)若a≤-1,證明:當(dāng)x≥1時,f(x)≥(a+2)x-x2;
(Ⅱ)設(shè)0為坐標原點,若在函數(shù)y=f(x)的圖象上總存在不同兩點A,B,使OA⊥OB,且線段AB的中點在y軸上,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項和Sn,且Sn=
5
2
n2-
3
2
n(n∈N*),bn=
1
5
(an+4).
(1)求數(shù)列{an}通項公式,并證明{an}是等差數(shù)列
(2)證明不等式
5amn
-
aman
>1對任意m、n∈N*都成立
(3)若數(shù)列dn=3bn+(-1)n-1•λ•2bn(n∈N*),問是否存在非零整數(shù)λ,使得對于任意正整數(shù)n,都有dn+1>dn?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:拋物線y2=4x,直線l過定點Q(2,0).
(Ⅰ)已知直線l與x軸不垂直且與拋物線交于A、B兩點,若在x軸上存在一點E(m,0),使得直線AE與直線BE的傾斜角互補,求E點的坐標;
(Ⅱ)已知直線l與x軸垂直,拋物線的一條切線與y軸和直線l分別交于M、N兩點,自點M引以QN為直徑的圓的切線,切點為T,證明:|MT|為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊答案