求下列各式的值:
(1)(9
3
 -
4
5

(2)log2(log381)+lne2-lg1000+loga1(a>0且a≠1).
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用分?jǐn)?shù)指數(shù)冪和根式的運(yùn)算性質(zhì)求解.
(2)利用對數(shù)的性質(zhì)和運(yùn)算法則求解.
解答: 解:(1)(9
3
)
-
4
5
=(323
1
2
)
-
4
5
=(3
5
2
)
-
4
5
=3-2=
1
9

(2)log2(log381)+lne2-lg1000+loga1
=log2(log334)+2lne-lg103+0=log24+2-3=2+2-3=1
點(diǎn)評:本題考查指數(shù)式和對數(shù)式化簡求值,是基礎(chǔ)題,解題時(shí)要注意指數(shù)和對數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+3)2+(y-4)2=4
(1)若直線l1過點(diǎn)A(-1,0),且與圓C相切,求直線l1的方程;
(2)若圓D的半徑為1,圓心D在直線l2:x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sinx,sinx),
c
=(-1,0).
(Ⅰ)若x=
π
3
,求向量
a
,
c
的夾角;
(Ⅱ)求函數(shù)f(x)=2
a
b
+1的最值以及相應(yīng)的x值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(4,k),若
a
b
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公比為正數(shù)的等比數(shù)列{an}中,a1+a2=2,a3+a4=8,則S8等于(  )
A、21B、42
C、135D、170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
(1-a2)x2+3(1-a)x+6
,
(1)若f(x)的定義域?yàn)閇-2,1],求實(shí)數(shù)a的值.
(2)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|-1≤x≤4m-2},P={x|x>2或x≤1}.
(1)若m=2,求M∩P;
(2)若M∪P=R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
mlnx+n
ex
(m,n為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=
2
e

(Ⅰ) 求m,n的值;
(Ⅱ) 求f(x)的單調(diào)區(qū)間;
(Ⅲ) 設(shè)g(x)=f′(x)•
exln(x+1)
2
(其中f'(x)為f(x)的導(dǎo)函數(shù)),證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°.平面ACEF⊥平面ABCD,四邊形ACEF是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:BC⊥平面ACEF;
(2)當(dāng)FM為何值時(shí),AM∥平面BDE?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案