9.圓(x-3)2+(y+4)2=1關于y2=8x軸對稱的圓的方程是( 。
A.(x+3)2+(y+4)2=1B.(x-4)2+(y+3)2=1C.(x+4)2+(y-3)2=1D.(x-3)2+(y-4)2=1

分析 求出拋物線的對稱軸,圓的圓心與半徑,然后求解對稱圓的方程.

解答 解:y2=8x軸是x軸;圓(x-3)2+(y+4)2=1的圓心(3,-4),半徑為:1.
圓(x-3)2+(y+4)2=1關于y2=8x軸對稱的圓的圓心(3,4),
對稱圓的方程是:(x-3)2+(y-4)2=1.
故選:D.

點評 本題考查拋物線的簡單性質圓的對稱知識的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知sinα=$\frac{1}{3}$,求$\frac{si{n}^{2}α}{co{s}^{2}α}$+sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據不清楚,那么8位員工月工資的中位數(shù)不可能是( 。
A.5800B.6000C.6200D.6400

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若使集合A={x|(kx-k2-6)(x-4)>0,x∈Z}中的元素個數(shù)最少,則實數(shù)k的取值范圍是[-3,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知$p:|{1-\frac{x-1}{2}}|≤3$,q:x2-2x+1-m2≤0(m>0),若q是p的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設l是直線,α和β是平面,則下列說法正確的是( 。
A.若α⊥β,l∥α,則l⊥βB.若α⊥β,l⊥a,則l∥βC.若l∥α,l∥β,則α∥βD.若l∥α,l⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知點P(2,-1),求:
(1)過P點與原點O距離為2的直線l的方程;
(2)是否存在過P點與原點O距離為6的直線?若存在,求出方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解下列不等式:
(1)5x<0.2;        
(2)log0.2(x-2)>1;             
(3)5x+2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知全集U=R,且A={x||x-2|>2},B={x|y=$\frac{1}{\sqrt{-{x}^{2}+2x+3}}$},則(∁UA)∩B等于( 。
A.(-1,3)B.(-1,0)∪(3,4)C.(3,4)D.[0,3)

查看答案和解析>>

同步練習冊答案