已知數(shù)列是等差數(shù)列,且,,
(1)求數(shù)列的通項公式; (2)令,求數(shù)列前n項和.
(1)(2)
解析試題分析:解:(1)數(shù)列{an}是等差數(shù)列,且a1=1,a1+a2+a3=12,設(shè)出公差為d,∴a1+a1+d+a1+2d=12,∴a1+d=4,可得2+d=4,解得d=2,∴an=a1+(n-1)d=1+(n-1)×2=2n+1,(2)數(shù)列{an}的通項公式為an=n•2n,設(shè)其前n項和為Sn,∴Sn=1•21+2•22+3•23+…+n•2n①
2Sn=1•22+2•23+3•24+…+n•2n+1②
①-②可得-Sn=21+22+23+…+2n-n•2n+1②
∴-Sn=-2+22+23++…+2n -n•2n+1,
∴Sn=n×2n+1-2n+1+2=(n-1)2n+1+2;
考點:等差數(shù)列,數(shù)列的求和
點評:主要是考查了等差數(shù)列的定義,以及通項公式的運用,以及錯位相減法來求解數(shù)列的和,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知首項為的等比數(shù)列的前n項和為, 且成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項公式;
(Ⅱ) 證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,已知.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)設(shè)數(shù)列滿足,求的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,,,記,
,(),若對于任意,,,成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ) 求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項,且()
①設(shè),求證:數(shù)列為等差數(shù)列;②設(shè),求數(shù)列的前項和。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com