12.已知函數(shù)$f(x)={(\frac{1}{2})^x}$,且f(a+1)>f(2a),則a的取值范圍是(1,+∞).

分析 利用指數(shù)函數(shù)的性質(zhì),解不等式即可.

解答 解:由函數(shù)$f(x)={(\frac{1}{2})^x}$,
那么:f(a+1)=$(\frac{1}{2})^{a+1}$,f(2a)=$(\frac{1}{2})^{2a}$,
則:f(a+1)>f(2a)轉(zhuǎn)化為:$(\frac{1}{2})^{a+1}>(\frac{1}{2})^{2a}$,
根據(jù)指數(shù)函數(shù)的性質(zhì)可得:a+1<2a
解得:a>1.
故答案為:(1,+∞).

點(diǎn)評 本題考查了指數(shù)函數(shù)的性質(zhì)的基本運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=2,AC=1,∠BAC=120°,AH為△ABC的高線,則$\overrightarrow{AB}$•$\overrightarrow{AH}$=(  )
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)B(0,-2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)為F2
(1)求橢圓的方程;
(文科)(2)求弦長CD.
(理科)(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)按照下述方法定義:當(dāng)x≤2時(shí),f(x)=-x2+2x;當(dāng)x>2時(shí),f(x)=$\frac{1}{2}$(x-2)2,方程f(x)=$\frac{1}{2}$的所有實(shí)數(shù)根之和是( 。
A.2B.3C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+bx+c(b,c為常數(shù)),對任意α∈R、β∈R,恒有f(sinα)≥0,且f(2+cosβ)≤0
(1)求f(1)的值
(2)求證:c≥3
(3)若f(sinα)的最大值為8,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$y=\sqrt{ln\sqrt{2x-1}}+\frac{1}{2-x}$的定義域是[1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a,b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與雙曲線C的右支相交于P,Q兩點(diǎn),若$\overrightarrow{P{F_2}}=3\overrightarrow{{F_2}Q}$,若△PQF1是以Q為頂角的等腰三角形,則雙曲線的離心率e=( 。
A.3B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{2x,x>0}\end{array}\right.$,則不等式f(x)<x+2的解集為(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知g(x)=log${\;}_{\frac{1}{3}}$x的反函數(shù)為y=f(x).
(1)若函數(shù)g(kx2+2x+1)的定義域?yàn)镽,求k的范圍;
(2)當(dāng)x∈[-1,1]時(shí),函數(shù)y=[f(x)]2-2mf(x)+3存在零點(diǎn),求m范圍;
(3)定義在I上的函數(shù)F(x),如果滿足:對任意x∈I,存在常數(shù)M,使得F(x)≤M成立,則稱函數(shù)F(x)是I上的“上限”函數(shù),其中M為函數(shù)F(x)的“上限”.記h(x)=$\frac{1-mf(-x)}{1+mf(-x)}$(m≠0);問:函數(shù)h(x)在區(qū)間[0,1]上是否存在“上限”M?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案