函數(shù)f(x)=
2-x+m -2,x≥1
mx+m-1 ,x<1
,對任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,則實(shí)數(shù)m的取值范圍是
[-
1
2
,0)
[-
1
2
,0)
分析:由題意可得,函數(shù)在它的定義域內(nèi)為減函數(shù),
m<0
2-1+m-2≤m+m-1
,由此解得實(shí)數(shù)m的取值范圍.
解答:解:由題意可得,函數(shù)的圖象上任意兩點(diǎn)連線的斜率都小于零,
故函數(shù)在它的定義域內(nèi)為減函數(shù).
結(jié)合函數(shù)的解析式可得
m<0
2-1+m-2≤m+m-1
,解得-
1
2
≤m<0
,
故答案為[-
1
2
,0).
點(diǎn)評:本題主要考查斜率公式、函數(shù)的單調(diào)性的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x-1  x≤0
x
1
2
   x>0
,滿足f(x)>1的x的取值范圍是
x<0或x>1
x<0或x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時(shí),f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-
π
6
,
π
3
]時(shí),函數(shù)f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數(shù)f(x)的圖象向右平移
π
12
個(gè)單位,縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數(shù)g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且滿足f(x+2)-f(x)=0,當(dāng)x∈[-1,0)時(shí),f(x)=x+2,則當(dāng)x∈[2,3]時(shí),f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請觀察表中值y隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(2,0)
(2,0)
上遞增.
當(dāng)x=
2
2
時(shí),y最小=
4
4

證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)遞減.
思考:(直接回答結(jié)果,不需證明)
(1)函數(shù)f(x)=x+
4
x
(x<0)有沒有最值?如果有,請說明是最大值還是最小值,以及取相應(yīng)最值時(shí)x的值.
(2)函數(shù)f(x)=ax+
b
x
,(a<0,b<0)在區(qū)間
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊答案