A. | 重心 | B. | 垂心 | C. | 內心 | D. | 外心 |
分析 作出圖形分析位置關系,利用三垂線定理,投影定理,可得P'在底面ABC的位置.利用四心定義,準確判斷.
解答 解:解法一:由題p到AB、BC、CA的距離相等,
知|PH|=|PG|=|PF|,且PH⊥AC,PG⊥BC,PF⊥AB,
又PP'⊥平面ABC
∴∠PP'H=∠PP'G=∠PP'F=90°
∴△PP'H≌△PP'G≌△PP'F
∴P'H=P'G=P'F
又∵PP'⊥平面ABC
∴PP'⊥AB且P'F⊥AB
∴AB⊥平面PP'F
∴AB⊥P'F
同理 BC⊥P'G,AC⊥P'H
所以P'到到AB、BC、CA的距離相等,
故P'為△ABC的內心.
故選C.
解法二:由題及三垂線定理可知:
AB⊥P'F,BC⊥P'G,AC⊥P'H
又|PH|=|PG|=|PF|,由投影定理知:
P'H=P'G=P'F
所以P'到到AB、BC、CA的距離相等,
故P'為△ABC的內心.
故選C.
點評 考查三垂線定理,投影定理,線面垂直判定定理,△內心定義.考查了數(shù)形結合思想.三角形四心問題,容易概念混亂,故本題屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{15}$ | B. | 4 | C. | 2$\sqrt{3}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {1,2,3,4} | C. | ∅ | D. | {∅} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,x2-x<0 | B. | ?x∈R,x2-x≤0 | C. | ?x∈R,x2-x<0 | D. | ?x∈R,x2-x≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,3} | B. | {4} | C. | {3,5} | D. | {5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π2-1 | B. | π2+1 | C. | π | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交且垂直 | B. | 相交但不垂直 | C. | 平行 | D. | 不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com