【題目】已知函數(shù)()在區(qū)間(0,)上至多取到兩次最大值,且在區(qū)間(,)上不單調(diào),則滿足條件的的個數(shù)是( )
A. 6 B. 7 C. 8 D. 9
【答案】D
【解析】
因為函數(shù)在區(qū)間(0,)上至多取到兩次最大值,所以≤2T+=,∴ω≤.經(jīng)驗證可知:ω可取4,6,7,8,9,10,11,12,13共9個值.
因為∈(0,),所以∈(0,),
又因為函數(shù)在區(qū)間(0,)上至多取到兩次最大值,
所以,解得,
當∈(,)時,∈(,)
=1時,在(,)上遞增,不符合題意;
=2時,在(,)上遞減,不符合題意;
=3時,在(,)上遞減,不符合題意;
ω=4時,在(,)上先減后增,符合題意;
ω=5時,在(,)上遞增,不符合題意;
ω=6時,在(,)上先增后減,不單調(diào),符合題意;
ω=7時,在(,)上不單調(diào),符合題意;
同理可得ω=8,9,10,11,12,13時均符合題意.
故滿足條件的ω有9個
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a,b∈R,c∈[0,2π),若對于任意實數(shù)x都有2sin(3x﹣ )=asin(bx+c),則滿足條件的有序?qū)崝?shù)組(a,b,c)的組數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρcos2θ-4sin θ=0.
(1)寫出直線l的普通方程和曲線C的直角坐標方程;
(2)已知點P(1,0).若點M的極坐標為,直線l經(jīng)過點M且與曲線C相交于A,B兩點,設(shè)線段AB的中點為Q,求|PQ|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設(shè)甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均不為零的數(shù)列{an},定義向量 , ,n∈N* . 下列命題中真命題是( )
A.若?n∈N*總有 ∥ 成立,則數(shù)列{an}是等差數(shù)列
B.若?n∈N*總有 ∥ 成立,則數(shù)列{an}是等比數(shù)列
C.若?n∈N*總有 ⊥ 成立,則數(shù)列{an}是等差數(shù)列
D.若?n∈N*總有 ⊥ 成立,則數(shù)列{an}是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對于命題:
①函數(shù)f(x)=-x+是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( )
A. 和均為真命題 B. 為真命題,為假命題
C. 為假命題,為真命題 D. 和均為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非零向量,滿足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且僅有唯一一個元素.
(1)求向量,的夾角θ;
(2)若關(guān)于t的不等式|-t|<|-m|的解集為空集,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2-x)=f(x-1),且方程f(x)=x有兩個相等的實根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]與[2m,2n],若存在,求出m,n的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com