【題目】如圖所示的方格紙由若干個邊長為1的小正方形并在一起組成,方格紙中有兩個定點A,B,點C為小正方形的頂點,且
(1)畫出所有的向量 ;
(2)求| |的最大值與最小值.

【答案】
(1)解:畫出所有的向量 如圖所示.


(2)解:由(1)所畫的圖知,

①當點C位于點C1或C2時,| |取得最小值 ;

②當點C位于點C5和C6時,| |取得最大值 .

∴| |的最大值為 ,最小值為 .


【解析】本題主要考查了向量的模、向量的幾何表示,解決問題的關(guān)鍵是根據(jù)所給向量滿足的幾何關(guān)系進行作圖計算即可.
【考點精析】關(guān)于本題考查的向量的幾何表示,需要了解帶有方向的線段叫做有向線段,有向線段包含三個要素:起點、方向、長度才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知下列四個命題:
①函數(shù)f(x)= x﹣lnx(x>0),則y=f(x)在區(qū)間( ,1)內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點;
②函數(shù)f(x)=log2(x+ ),g(x)=1+ 不都是奇函數(shù);
③若函數(shù)f(x)滿足f(x﹣1)=﹣f(x+1),且f(1)=2,則f(7)=﹣2;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1,
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法不正確的是

A.命題“對,都有”的否定為“,使得

B.的必要不充分條件

C. “,則 是真命題

D.甲、乙兩位學生參與數(shù)學模擬考試,設(shè)命題是“甲考試及格,是“乙考試及格,則命題“至少有一位學生不及格”可表示

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知A為左頂點,F是左焦點,l交OA的延長線于點B,點P,Q在橢圓上,有PD⊥l于點D,QF⊥AO,則橢圓的離心率是① ; ② ; ③ ; ④ ; ⑤ 其中正確的是(

A.①②
B.①③④
C.②③⑤
D.①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年10月28日,經(jīng)歷了近半個世紀風雨的南京長江大橋真“累”了,終于停下來喘口氣了,之前大橋在改善我們城市的交通狀況方面功不可沒.據(jù)相關(guān)數(shù)據(jù)統(tǒng)計,一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到280輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過30輛/千米時,車流速度為50千米/小時.研究表明,當30≤x≤280時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤280時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時) f(x)=xv(x)可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),mR

(Ⅰ)當m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值;

(Ⅱ)討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某輛汽車以x km/h的速度在高速公路上勻速行駛考慮到高速公路行車安全要求60≤x≤120時,每小時的油耗所需要的汽油量,其中k為常數(shù),若汽車以120km/h的速度行駛時,每小時的油耗為11.5L.

1k的值;

2求該汽車每小時油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式ax2+5x+b>0的解集是{x|2<x<3},則不等式bx2﹣5x+a>0的解集是(
A.{x|x<﹣3或x>﹣2}
B.{x|x<﹣ 或x>﹣ }
C.{x|﹣ <x<﹣ }
D.{x|﹣3<x<﹣2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C的中心在坐標原點,焦點在x軸上,該橢圓經(jīng)過點 且離心率為
(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案