已知函數(shù)f(x)=+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.
的極小值為1;單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為。
解析試題分析:先求導(dǎo)并整理變形,再令導(dǎo)數(shù)等于0,并求根。討論導(dǎo)數(shù)的正負,導(dǎo)數(shù)大于0得增區(qū)間,導(dǎo)數(shù)小于0得減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值。
因為,
令,得,
又的定義域為,
,隨x的變化情況如下表:
所以時,的極小值為1.
的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
考點:用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),,其中為實數(shù),若在上是單調(diào)減函數(shù),且在上有最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)的圖像過點和,直線,直線(其中,為常數(shù));若直線與函數(shù)的圖像以及直線與函數(shù)以及的圖像所圍成的封閉圖形如陰影所示.
(1)求;
(2)求陰影面積關(guān)于的函數(shù)的解析式;
(3)若過點可作曲線的三條切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=xlnx-x2.
(1)當(dāng)a=1時,函數(shù)y=f(x)有幾個極值點?
(2)是否存在實數(shù)a,使函數(shù)f(x)=xlnx-x2有兩個極值?若存在,求實數(shù)a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(R),為其導(dǎo)函數(shù),且時有極小值.
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當(dāng)時,對于任意x,和的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式(為正整數(shù))對任意正實數(shù)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)若,求曲線在點處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間;
(3)若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com