(本題滿分14分)如圖,在正方體ABCDA1B1C1D1中,E、F為棱AD、AB的中點(diǎn).

(1)求證:EF∥平面CB1D1;

(2)求證:平面CAA1C1⊥平面CB1D1

 

【答案】

(1)連結(jié)BD.在長(zhǎng)方體中,對(duì)角線.又 E、F為棱AD、AB的中點(diǎn), . . 又B1D1平面平面, EF∥平面CB1D1.(2)因?yàn)?在長(zhǎng)方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1, AA1B1D1.又因?yàn)樵谡叫?i>A1B1C1D1中,A1C1B1D1 B1D1⊥平面CAA1C1.   又因?yàn)?i>B1D1平面CB1D1,平面CAA1C1⊥平面CB1D1

【解析】

試題分析:(1)證明:連結(jié)BD.在長(zhǎng)方體中,對(duì)角線.

 E、F為棱AD、AB的中點(diǎn), .

. 又B1D1平面,平面, EF∥平面CB1D1.

(2)因?yàn)?在長(zhǎng)方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1 AA1B1D1.又因?yàn)樵谡叫?i>A1B1C1D1中,A1C1B1D1

 B1D1⊥平面CAA1C1.   又因?yàn)?i>B1D1平面CB1D1,平面CAA1C1⊥平面CB1D1

考點(diǎn):本題考查了空間中的線面關(guān)系

點(diǎn)評(píng):證明立體幾何問題常常利用幾何方法,通過證明或找到線面之間的關(guān)系,依據(jù)判定定理或性質(zhì)進(jìn)行證明求解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

         如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),

   (1)求證:;

   (2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF//平面AEB1;

   (3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中點(diǎn),求證:BE//平面ACF

(Ⅱ)求直線BE與平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)如圖,正方形、的邊長(zhǎng)都是1,平面平面,點(diǎn)上移動(dòng),點(diǎn)上移動(dòng),若

(I)求的長(zhǎng);

(II)為何值時(shí),的長(zhǎng)最。

(III)當(dāng)的長(zhǎng)最小時(shí),求面與面所成銳二面角余弦值的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點(diǎn)。

   (1)求證:EF//平面ABC;

   (2)求證:平面平面C1CBB1;

   (3)求異面直線AB與EB1所成的角。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案