【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

【答案】(1)(2)見解析

【解析】(1)由題設(shè),得1,

、解得a26b23,故橢圓C的方程為1.

(2)設(shè)直線MP的斜率為k,則直線MQ的斜率為-k,

假設(shè)∠PMQ為直角,則k·(k)=-1,即k±1.

k1,則直線MQ的方程為y1=-(x2),與橢圓C方程聯(lián)立,得x24x40,

該方程有兩個(gè)相等的實(shí)數(shù)根-2,不合題意;

同理,若k=-1也不合題意.故∠PMQ不可能為直角.記P(x1,y1)Q(x2,y2)

設(shè)直線MP的方程為y1k(x2),與橢圓C的方程聯(lián)立,得(12k2)x2(8k24k)x8k28k40,

則-2,x1是該方程的兩根,則-2x1,即x1.

設(shè)直線MQ的方程為y1=-k(x2),同理得x2.

y11k(x12)y21=-k(x22),

kPQ1

因此直線PQ的斜率為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,給出以下四個(gè)命題:
,有 ;
,有 ;
,有 ;
, .
其中所有真命題的序號是( )
A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在小明的婚禮上,為了活躍氣氛,主持人邀請10位客人做一個(gè)游戲.第一輪游戲中,主持人將標(biāo)有數(shù)字1,2,…,10的十張相同的卡片放入一個(gè)不透明箱子中,讓客人依次去摸,摸到數(shù)字6,7,…,10的客人留下,其余的淘汰,第二輪放入1,2,…,5五張卡片,讓留下的客人依次去摸,摸到數(shù)字3,4,5的客人留下,第三輪放入1,2,3三張卡片,讓留下的客人依次去摸,摸到數(shù)字2,3的客人留下,同樣第四輪淘汰一位,最后留下的客人獲得小明準(zhǔn)備的禮物.已知客人甲參加了該游戲.

(1)求甲拿到禮物的概率;

(2)設(shè)表示甲參加游戲的輪數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園有一塊邊長為2的等邊ABC的邊角地,現(xiàn)修成草坪,圖中DE把草坪分成面積相等的兩部分,DAB上,EAC.

1)設(shè)ADxx≥1),EDy,求用x表示y的函數(shù)關(guān)系式;

2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求曲線 在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.

附:

PK2k

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中, 為正方形, 為菱形, .

(1)求證:平面⊥平面;

(2)若中點(diǎn),∠是二面角的平面角,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車的推廣給消費(fèi)者帶來全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:

并且,年齡在的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見.

(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;

(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟(jì)作物(下簡稱 作物)的生長狀況,用簡單隨機(jī)抽樣方法從該市調(diào)查了 500 處 作物種植點(diǎn),其生長狀況如表:

其中生長指數(shù)的含義是:2 代表“生長良好”,1 代表“生長基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.

(1)估計(jì)該市空氣質(zhì)量差的作物種植點(diǎn)中,不絕收的種植點(diǎn)所占的比例;

(2)能否有 99%的把握認(rèn)為“該市作物的種植點(diǎn)是否絕收與所在地域有關(guān)”?

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該市作物的種植點(diǎn)中,絕收種植點(diǎn)的比例?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案