已知函數(shù)f(x)=
x-2,x>10
f[f(x+6)],x≤10
,則f(5)的值是( 。
A、8B、9C、10D、11
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的解析式,求出函數(shù)值即可.
解答: 解:∵函數(shù)f(x)=
x-2,x>10
f[f(x+6)],x≤10
,
∴當(dāng)x≤10時,f(x)=f[f(x+6)];
∴f(5)=f[f(5+6)]
=f[f(11)]=f[11-2]
=f[9]=f[f(9+6)]
=f[f(15)]=f[15-2]
=f[13]=13-2=11.
故選:D.
點評:本題考查了根據(jù)分段函數(shù)的解析式求函數(shù)值的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+bx+k(b≠0,k≠0)的圖象交x軸于M、N兩點,|MN|=2,函數(shù)y=kx+b的圖象經(jīng)過線段MN的中點,分別求出這兩個函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,設(shè)函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,則g(
1
2015
)+g(
2
2015
)+…+g(
2014
2015
)=( 。
A、2 013
B、2 014
C、2 015
D、2 016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,角A、B、C所對的邊分別是a、b、c,∠B=
π
3
,b=4,acos2
C
2
+ccos2
A
2
=6,S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年2月,西非開始爆發(fā)埃博拉病毒疫情,埃博拉病毒是引起人類和靈長類動物發(fā)生埃博拉出血熱的烈性病毒,引發(fā)了世界恐慌.中國國際救援組織立即采用分層抽樣的方法從病毒專家、心理專家、地質(zhì)專家三類專家中抽取若干人組成研究團(tuán)隊赴西非工作,有關(guān)數(shù)據(jù)見表1(單位:人).
病毒專家為了檢測當(dāng)?shù)厝罕姲l(fā)燒與是否更易受博拉病毒疫情影響,在當(dāng)?shù)仉S機(jī)選取了110群眾進(jìn)行了檢測,并將有關(guān)數(shù)據(jù)整理為不完整的2×2列聯(lián)表(表2).
表1:
相關(guān)人員數(shù)抽取人數(shù)
病毒專家48x
心理專家24y
地質(zhì)專家726
表2:
發(fā)燒無發(fā)燒合計
患Ebola50A60
不患EbolaB4050
合計CDE
(1)求x,y;
(2)寫出表2中A、B、C、D、E的值,并判斷是否有99.9%的把握認(rèn)為疫情地區(qū)的群眾發(fā)燒與患Ebola病毒有關(guān);
(3)若從研究團(tuán)隊的病毒專家和心理專家中隨機(jī)選2人撰寫研究報告,求其中恰好有1人為病毒專家的概率.K2臨界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義域為R的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f(1)=0,則不等式f(x)>0的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“p∨q為真命題”是“p∧q為真命題”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若loga2<1,則實數(shù)a的取值范圍是( 。
A、(1,2)
B、(0,1)∪(2,+∞)
C、(0,1)∪(1,2)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某方程有一無理根在區(qū)間D=(1,3)內(nèi),若用二分法求此根的近似值,則將D至少等分
 
次后,所得近似值可精確到0.1.

查看答案和解析>>

同步練習(xí)冊答案