【題目】若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為f(x)=x2+1,值域?yàn)閧5,10}的“孿生函數(shù)”共有( )
A.4個(gè)
B.8個(gè)
C.9個(gè)
D.12個(gè)
【答案】C
【解析】解:由已知中“孿生函數(shù)”的定義: 一系列函數(shù)的解析式相同,值域相同,但定義域不同,
當(dāng)函數(shù)解析式為y=x2+1,值域?yàn)閧5,10}時(shí),
由y=5時(shí),x=±2,y=7時(shí),x=±3
用列舉法得函數(shù)的定義域可能為:{﹣2,﹣3},{﹣2,3},{2,﹣3},{2,3},{﹣2,﹣3,3},{2,﹣3,3},{2,3,﹣2},{2,﹣3,﹣2},{﹣2,﹣3,3,2},共9個(gè)
故選:C.
根據(jù)已知中若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,再由函數(shù)解析式為y=x2+1,值域?yàn)閧5,10},由y=5時(shí),x=±2;y=10時(shí),x=±3,用列舉法,可以得到函數(shù)解析式為y=x2+1,值域?yàn)閧5,10}的所有“孿生函數(shù)”,進(jìn)而得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①一條直線垂直于一個(gè)平面,則這條直線就和這個(gè)平面內(nèi)的任何直線垂直;
②過平面外一點(diǎn)有只有一個(gè)平面和這個(gè)平面垂直;
③過直線外一點(diǎn)有且只有一個(gè)平面和這條直線平行;
④如果兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的任一直線平行于另一個(gè)平面.
其中正確的是__________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“m=﹣2”是“直線2x+(m﹣2)y+3=0與直線(6﹣m)x+(2﹣m)y﹣5=0垂直”的( 。
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】原命題:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”的逆命題、否命題、逆否命題中真命題有( )個(gè).
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示2×2方格,在每一個(gè)方格中填入一個(gè)數(shù)字,數(shù)字可以是1、2、3中的任何一個(gè),允許重復(fù).若填入A方格的數(shù)字大于B方格的數(shù)字,則不同的填法共有種(用數(shù)字作答).
A | B |
C | D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|﹣3≤2x﹣1≤3},集合B為函數(shù)y=lg(x﹣1)的定義域,則A∪B=( )
A.(1,2)
B.[﹣1,+∞)
C.(1,2]
D.[1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不同直線a,b及平面α,則下列命題中真命題是( )
A.若a∥α,b∥a,則a∥b
B.若a∥b,b∥α,則a∥α
C.若a⊥α,b⊥α,則a∥b
D.若a⊥α,b⊥a,則b⊥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間,下列命題正確的是( )
A.平行直線的平行投影重合
B.平行于同一直線的兩個(gè)平面平行
C.垂直于同一平面兩個(gè)平面平行
D.平行于同一平面的兩個(gè)平面平行
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com