過拋物線y2=2px(p>0)的對稱軸上一點A(a,0)的直線與拋物線相交于M、N兩點,自M、N向直線l:x=-a作垂線,垂足分別為M1、N1
(1)當時,求證:AM1⊥AN1
(2)記△AMM1、△AM1N1、△ANN1的面積分別為S1、S2、S3,是否存在λ,使得對任意的a>0,都有S22=λS1S2成立。若存在,求出λ的值;若不存在,說明理由
解:依題意,可設(shè)直線MN的方程為,,則有

消去x可得
從而有 ①
于是 ②
又由,學科網(wǎng)(www.zxxk.com)--國內(nèi)最大的教育資源門戶,提供試卷、教案、課件、論文、素材及各類教學資源下載,還有大量而豐富的教學相關(guān)資訊!,可得
 ③
(1)如圖,當時,點即為拋物線的焦點,l為其準線
此時,并由①可得


。
(2)存在,使得對任意的,都有成立,證明如下:
記直線l與x軸的交點為A1,則
于是有




將①、②、③代入上式化簡可得

上式恒成立,即對任意成立。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準線的交點為B,點A在拋物線準線上的射影為C,若
AF
=
FB
BA
BC
=48
,則拋物線的方程為( 。
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)上一定點P(x0,y0)(y0>0)作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),若PA與PB的斜率存在且傾斜角互補,則
y1+y2y0
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F作直線交拋物線于A、B兩點,O為拋物線的頂點.則△ABO是一個( 。
A、等邊三角形B、直角三角形C、不等邊銳角三角形D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點F的直線AB交拋物線于A,B兩點,弦AB的中點為M,過M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB
;
(2)過A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•武漢模擬)已知過拋物線y2=2px(p>0)的焦點F的直線交拋物線于M、N兩點,直線OM、ON(O為坐標原點)分別與準線l:x=-
p
2
相交于P、Q兩點,則∠PFQ=( 。

查看答案和解析>>

同步練習冊答案