若函數(shù)y=f(x)在定義域內(nèi)單調(diào),且用二分法探究知道f(x)在定義域內(nèi)的零點同時在(0,8),(0,4),(0,2),(0,1)內(nèi),那么下列命題中正確的是( 。
A、函數(shù)f(x)在區(qū)間(0,
1
2
)
內(nèi)有零點
B、函數(shù)f(x)在區(qū)間[1,8)上無零點
C、函數(shù)f(x)在區(qū)間(0,
1
2
)
(
1
2
,1)
內(nèi)有零點
D、函數(shù)f(x)可能在區(qū)間(0,1)上有多個零點
分析:到區(qū)間在(0,1)上以后,不能確定零點是在(0,1)的那一部分,只能確定函數(shù)在(1,8)上沒有零點,得到結(jié)論.
解答:解:用二分法探究知道f(x)在定義域內(nèi)的零點同時在
(0,8),(0,4),(0,2),(0,1)內(nèi),
到區(qū)間在(0,1)上以后,不能確定零點是在(0,1)的那一部分,
只能確定函數(shù)在(1,8)上沒有零點,
故選B.
點評:本題考查函數(shù)的零點,是一個基礎(chǔ)題,本題解題的關(guān)鍵是理解函數(shù)利用二分法來求零點的方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知變量t,y滿足關(guān)系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,變量t,x滿足關(guān)系式t=ax,變量y,x滿足函數(shù)關(guān)系式y(tǒng)=f(x).
(1)求函數(shù)y=f(x)表達式;
(2)若函數(shù)y=f(x)在[2a,3a]上具有單調(diào)性,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)在[em,+∞)(m∈Z)上有零點,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+2ax-3a.
(Ⅰ)若函數(shù)y=f(x)在(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當函數(shù)f(x)在[1,2]上的最大值為4時,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(2x)=x2-2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[
12
,8]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在(0,+∞)上的導(dǎo)函數(shù)為f′(x),且不等式xf′(x)>f(x)恒成立,又常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步練習冊答案