19.已知$cos(θ-\frac{π}{2})=\frac{4}{5}$,且sinθ-cosθ>1,則sin(2θ-2π)=( 。
A.$-\frac{24}{25}$B.$-\frac{12}{25}$C.$-\frac{4}{5}$D.$\frac{24}{25}$

分析 由$cos(θ-\frac{π}{2})=\frac{4}{5}$,sinθ-cosθ>1,求出sinθ、cosθ的值,化簡(jiǎn)sin(2θ-2π)即可得到答案.

解答 解:由題意:$cos(θ-\frac{π}{2})=\frac{4}{5}$,
∴sinθ=$\frac{4}{5}$,
又∵sinθ-cosθ>1,
∴cosθ<0,
由sin2θ+cos2θ=1,
解得:cosθ=$-\frac{3}{5}$,
那么:sin(2θ-2π)=-sin2θ=-2sinθcosθ=-2×$\frac{4}{5}×(-\frac{3}{5})$=$-\frac{24}{25}$,
故選:A.

點(diǎn)評(píng) 本題考查了同角三角函數(shù)關(guān)系式和誘導(dǎo)公式的化簡(jiǎn)及計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\overrightarrow a$=(2sin2x,1),$\overrightarrow b$=(1,-1),x∈R.
(1)當(dāng)x=$\frac{π}{6}$時(shí),求下列$\overrightarrow a$+$\overrightarrow b$的坐標(biāo);
(2)若函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$+3,問(wèn):x為何值時(shí),f(x)取得最大值?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x2+2x,g(x)+f(-x)=0.
(1)求函數(shù)g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-l,1]上單調(diào)遞增,求實(shí)數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,P是直徑AB的延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)P作圓O的切線,切點(diǎn)為C,連接AC,若∠CPA=30°,求證:CA=CP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點(diǎn)為F(c,0),離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M在橢圓上且位于第一象限,直線FM被圓${x^2}+{y^2}=\frac{b^2}{4}$截得的線段的長(zhǎng)為c,則直線FM的斜率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.直線y=x-1與拋物線y2=2x相交于P、Q兩點(diǎn),拋物線上一點(diǎn)M與P、Q構(gòu)成△MPQ的面積為$\frac{{3\sqrt{3}}}{2}$,這樣的點(diǎn)M有且只有(  )個(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$.
(1)求sin2θ的值;        
(2)求sin(θ+$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知Sn等差數(shù)列{an}的前n項(xiàng)和,若S4=4,S8=16,則S12=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知扇形的周長(zhǎng)是4cm,則扇形面積最大是( 。
A.2B.1C.$\frac{1}{2}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案