13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{m-{3}^{x},x≤0}\\{-{x}^{2},x>0}\end{array}\right.$給出下列兩個命題,p:存在m∈(-∞,0),使得方程f(x)=0有實數(shù)解;q:當(dāng)m=$\frac{1}{3}$時,f(f(1))=0,則下列命題為真命題的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

分析 由函數(shù)f(x)=$\left\{\begin{array}{l}{m-{3}^{x},x≤0}\\{-{x}^{2},x>0}\end{array}\right.$,求出命題p是假命題,命題q是真命題,由此利用復(fù)合命題的真值表能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{m-{3}^{x},x≤0}\\{-{x}^{2},x>0}\end{array}\right.$,
∴當(dāng)x>0時,f(x)=-x2<0,
當(dāng)x<0時,當(dāng)f(x)=m-3x=0時,m=3x∈(0,1),
∴命題p:存在m∈(-∞,0),使得方程f(x)=0有實數(shù)解是假命題,
當(dāng)m=$\frac{1}{3}$時,f(1)=-1,f(f(1))=f(-1)=$\frac{1}{3}-{3}^{-1}$=0,
命題q:當(dāng)m=$\frac{1}{3}$時,f(f(1))=0,是真命題,
故在A中,P∧q是假命題,故A錯誤;
在B中,(¬p)∧q是真命題,故B正確;
在C中,p∧(¬q)是假命題,故C錯誤;
在D中,p∨(¬q)是假命題,故D錯誤.
故選:B.

點評 本題考查命題真假的判斷,考查函數(shù)性質(zhì)、復(fù)合命題、指數(shù)函數(shù)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|-1<x<2},集合B={x|x(x-3)<0},則A∪B=( 。
A.{x|0<x<2}B.{x|-1<x<3}C.{x|-1<x<0}D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一條光線從點(1,-1)射出,經(jīng)y軸反射后與圓(x-2)2+y2=1相交,則入射光線所在直線的斜率的取值范圍為( 。
A.$[{-\frac{3}{4},0}]$B.$[{0,\frac{3}{4}}]$C.$({-\frac{3}{4},0})$D.$({0,\frac{3}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+x+a,g(x)=ex
(Ⅰ)函數(shù)f(x)的圖象在點(1,f(1))處的切線與2x+y-1=0平行,求實數(shù)a的值;
(Ⅱ)設(shè)h(x)=$\frac{f(x)}{g(x)}$,當(dāng)x∈[0,2]時,$\frac{f(x)}{g(x)}$≥$\frac{1}{g(2)}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow a,\overrightarrow b$是單位向量,$\overrightarrow a,\overrightarrow b$的夾角為90°,若向量$\overrightarrow c滿足$|$\overrightarrow c-\overrightarrow a-\overrightarrow b|=2$,則$\overrightarrow{|c}$|的最大值為( 。
A.$2-\sqrt{2}$B.$\sqrt{2}$C.2D.$2+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從1,2,3,4,5這5個數(shù)字中隨機抽取3個,則所抽取的數(shù)字之和能被4整除的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx+x2
(Ⅰ)若a=-1,求函數(shù)f(x)的極值;
(Ⅱ)若a=1,?x1∈(1,2),?x2∈(1,2),使得f(x1)-x12=mx2-$\frac{1}{3}m{x_2}$3(m≠0),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=({ax+a+2})ln({x+1})+\frac{1}{2}a{x^2}-({2+a})x+1$.
(1)當(dāng)a=1時,判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表.
印刷冊數(shù)x(千冊)23458
單冊成本y(元)3.22.421.91.7
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,方程甲:$\widehat{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\widehat{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(Ⅰ)為了評價兩種模型的擬合效果,完成以下任務(wù).
(i)完成下表(計算結(jié)果精確到0.1);
印刷冊數(shù)x(千冊)23458
單冊成本y(元)3.22.421.91.7

模型甲
估計值$\widehat{{y}_{i}}$(1) 2.42.1 1.6
殘值$\widehat{{e}_{i}}$(1) 0-0.1 0.1

模型乙
估計值$\widehat{{y}_{i}}$(2) 2.321.9 
殘值$\widehat{{e}_{i}}$(2) 0.100 
(ii)分別計算模型甲與模型乙的殘差平方和Q1和Q2,并通過比較Q1,Q2的大小,判斷哪個模型擬合效果更好.
(Ⅱ)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據(jù)市場調(diào)查,新需求量為10千冊,若印刷廠以每冊5元的價格將書籍出售給訂貨商,試估計印刷廠二次印刷獲得的利潤.(按(Ⅰ)中擬合效果較好的模型計算印刷單冊書的成本)

查看答案和解析>>

同步練習(xí)冊答案