設(shè)函數(shù)f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程24x+y-12=0則c+2d=
0
0
分析:由f(x)=ax3+bx2+cx+d,知f(0)=d,f′(x)=3ax2+2bx+c,再由函數(shù)f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程24x+y-12=0,能求出c+2d.
解答:解:∵f(x)=ax3+bx2+cx+d,
∴f(0)=d,
f′(x)=3ax2+2bx+c,
k=f′(0)=c,
∴函數(shù)f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程為:
y-d=cx,即-cx+y-d=0,
∵函數(shù)f(x)=ax3+bx2+cx+d的圖象在x=0處的切線方程24x+y-12=0,
∴c=-24,d=12,c+2d=0.
故答案為:0.
點評:本題考查函數(shù)的切線方程的求法,解題時要認(rèn)真審題,仔細解答,注意等價轉(zhuǎn)化思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊答案